题名 | High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise |
作者 | |
通讯作者 | Zhang, Bo |
发表日期 | 2023-10-01
|
DOI | |
发表期刊 | |
ISSN | 1009-6124
|
EISSN | 1559-7067
|
卷号 | 36期号:5页码:2125-2154 |
摘要 | The estimates of the high-dimensional volatility matrix based on high-frequency data play a pivotal role in many financial applications. However, most existing studies have been built on the sub-Gaussian and cross-sectional independence assumptions of microstructure noise, which are typically violated in the financial markets. In this paper, the authors proposed a new robust volatility matrix estimator, with very mild assumptions on the cross-sectional dependence and tail behaviors of the noises, and demonstrated that it can achieve the optimal convergence rate n-1/4. Furthermore, the proposed model offered better explanatory and predictive powers by decomposing the estimator into low-rank and sparse components, using an appropriate regularization procedure. Simulation studies demonstrated that the proposed estimator outperforms its competitors under various dependence structures of microstructure noise. Additionally, an extensive analysis of the high-frequency data for stocks in the Shenzhen Stock Exchange of China demonstrated the practical effectiveness of the estimator. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Interdisciplinary Applications
|
WOS记录号 | WOS:001085954700017
|
出版者 | |
EI入藏号 | 20234214924844
|
EI主题词 | Clustering algorithms
; Commerce
; Financial markets
; Frequency estimation
; Microstructure
|
EI分类号 | Information Sources and Analysis:903.1
; Algebra:921.1
; Materials Science:951
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/582862 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.Renmin Univ China, Inst Probabil & Stat, Sch Stat, Ctr Appl Stat, Beijing 100086, Peoples R China 2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Liang, Wanwan,Wu, Ben,Fan, Xinyan,et al. High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2023,36(5):2125-2154.
|
APA |
Liang, Wanwan,Wu, Ben,Fan, Xinyan,Jing, Bingyi,&Zhang, Bo.(2023).High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,36(5),2125-2154.
|
MLA |
Liang, Wanwan,et al."High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 36.5(2023):2125-2154.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论