中文版 | English
题名

High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise

作者
通讯作者Zhang, Bo
发表日期
2023-10-01
DOI
发表期刊
ISSN
1009-6124
EISSN
1559-7067
卷号36期号:5页码:2125-2154
摘要

The estimates of the high-dimensional volatility matrix based on high-frequency data play a pivotal role in many financial applications. However, most existing studies have been built on the sub-Gaussian and cross-sectional independence assumptions of microstructure noise, which are typically violated in the financial markets. In this paper, the authors proposed a new robust volatility matrix estimator, with very mild assumptions on the cross-sectional dependence and tail behaviors of the noises, and demonstrated that it can achieve the optimal convergence rate n-1/4. Furthermore, the proposed model offered better explanatory and predictive powers by decomposing the estimator into low-rank and sparse components, using an appropriate regularization procedure. Simulation studies demonstrated that the proposed estimator outperforms its competitors under various dependence structures of microstructure noise. Additionally, an extensive analysis of the high-frequency data for stocks in the Shenzhen Stock Exchange of China demonstrated the practical effectiveness of the estimator.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[
WOS研究方向
Mathematics
WOS类目
Mathematics, Interdisciplinary Applications
WOS记录号
WOS:001085954700017
出版者
EI入藏号
20234214924844
EI主题词
Clustering algorithms ; Commerce ; Financial markets ; Frequency estimation ; Microstructure
EI分类号
Information Sources and Analysis:903.1 ; Algebra:921.1 ; Materials Science:951
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582862
专题理学院_统计与数据科学系
作者单位
1.Renmin Univ China, Inst Probabil & Stat, Sch Stat, Ctr Appl Stat, Beijing 100086, Peoples R China
2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Liang, Wanwan,Wu, Ben,Fan, Xinyan,et al. High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2023,36(5):2125-2154.
APA
Liang, Wanwan,Wu, Ben,Fan, Xinyan,Jing, Bingyi,&Zhang, Bo.(2023).High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,36(5),2125-2154.
MLA
Liang, Wanwan,et al."High-Dimensional Volatility Matrix Estimation with Cross-Sectional Dependent and Heavy-Tailed Microstructural Noise".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 36.5(2023):2125-2154.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liang, Wanwan]的文章
[Wu, Ben]的文章
[Fan, Xinyan]的文章
百度学术
百度学术中相似的文章
[Liang, Wanwan]的文章
[Wu, Ben]的文章
[Fan, Xinyan]的文章
必应学术
必应学术中相似的文章
[Liang, Wanwan]的文章
[Wu, Ben]的文章
[Fan, Xinyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。