中文版 | English
题名

Deep learning to assist composition classification and thyroid solid nodule diagnosis: a multicenter diagnostic study

作者
通讯作者Yue, Wenwen; Dong, Fajin; Xu, Dong
发表日期
2023-10-01
DOI
发表期刊
ISSN
0938-7994
EISSN
1432-1084
摘要
Objectives This study aimed to propose a deep learning (DL)-based framework for identifying the composition of thyroid nodules and assessing their malignancy risk.MethodsWe conducted a retrospective multicenter study using ultrasound images from four hospitals. Convolutional neural network (CNN) models were constructed to classify ultrasound images of thyroid nodules into solid and non-solid, as well as benign and malignant. A total of 11,201 images of 6784 nodules were used for training, validation, and testing. The area under the receiver-operating characteristic curve (AUC) was employed as the primary evaluation index.Results The models had AUCs higher than 0.91 in the benign and malignant grading of solid thyroid nodules, with the Inception-ResNet AUC being the highest at 0.94. In the test set, the best algorithm for identifying benign and malignant thyroid nodules had a sensitivity of 0.88, and a specificity of 0.86. In the human vs. DL test set, the best algorithm had a sensitivity of 0.93, and a specificity of 0.86. The Inception-ResNet model performed better than the senior physicians (p < 0.001). The sensitivity and specificity of the optimal model based on the external test set were 0.90 and 0.75, respectively.Conclusions This research demonstrates that CNNs can assist thyroid nodule diagnosis and reduce the rate of unnecessary fine-needle aspiration (FNA).Clinical relevance statement High-resolution ultrasound has led to increased detection of thyroid nodules. This results in unnecessary fine-needle aspiration and anxiety for patients whose nodules are benign. Deep learning can solve these problems to some extent.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001083922000001
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582910
专题南方科技大学第一附属医院
作者单位
1.Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med HIM, Dept Diagnost Ultrasound Imaging & Intervent Thera, Hangzhou 310022, Peoples R China
2.Wenling Big Data & Artificial Intelligence Inst Me, Taizhou 317502, Zhejiang, Peoples R China
3.Zhejiang Canc Hosp, Taizhou Canc Hosp, Taizhou Key Lab Minimally Invas Intervent Therapy, Taizhou Branch, Taizhou Campus, Taizhou 317502, Peoples R China
4.Illuminate LLC, Shenzhen 518000, Guangdong, Peoples R China
5.Translat Res Zhejiang Prov, Key Lab Head & Neck Canc, Hangzhou 310022, Peoples R China
6.Zhejiang Prov Res Ctr Canc Intelligent Diag & Mol, Hangzhou 310022, Peoples R China
7.Zhejiang Chinese Med Univ, Clin Med Coll 2, Hangzhou 310053, Peoples R China
8.Zhejiang Univ, Shengzhou Peoples Hosp, Dept Ultrasound, Affiliated Hosp 1,Shengzhou Branch, , Shengzhou, Shengzhou 312400, Peoples R China
9.Southern Univ Sci & Technol, Jinan Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp,Dept Ultrasound,Clin Med Col, Shenzhen 518020, Peoples R China
10.Tongji Univ, Shanghai Peoples Hosp 10, Ctr Minimally Invas Treatment Tumor, Dept Med Ultrasound,Sch Med, Shanghai 200072, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Chen, Chen,Jiang, Yitao,Yao, Jincao,et al. Deep learning to assist composition classification and thyroid solid nodule diagnosis: a multicenter diagnostic study[J]. EUROPEAN RADIOLOGY,2023.
APA
Chen, Chen.,Jiang, Yitao.,Yao, Jincao.,Lai, Min.,Liu, Yuanzhen.,...&Xu, Dong.(2023).Deep learning to assist composition classification and thyroid solid nodule diagnosis: a multicenter diagnostic study.EUROPEAN RADIOLOGY.
MLA
Chen, Chen,et al."Deep learning to assist composition classification and thyroid solid nodule diagnosis: a multicenter diagnostic study".EUROPEAN RADIOLOGY (2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Chen]的文章
[Jiang, Yitao]的文章
[Yao, Jincao]的文章
百度学术
百度学术中相似的文章
[Chen, Chen]的文章
[Jiang, Yitao]的文章
[Yao, Jincao]的文章
必应学术
必应学术中相似的文章
[Chen, Chen]的文章
[Jiang, Yitao]的文章
[Yao, Jincao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。