中文版 | English
题名

AutoML for Deep Recommender Systems: A Survey

作者
通讯作者Shi, Yuhui; Yin, Hongzhi
发表日期
2023-10-01
DOI
发表期刊
ISSN
1046-8188
EISSN
1558-2868
卷号41期号:4
摘要
Recommender systems play a significant role in information filtering and have been utilized in different scenarios, such as e-commerce and social media. With the prosperity of deep learning, deep recommender systems show superior performance by capturing non-linear information and item-user relationships. However, the design of deep recommender systems heavily relies on human experiences and expert knowledge. To tackle this problem, Automated Machine Learning (AutoML) is introduced to automatically search for the proper candidates for different parts of deep recommender systems. This survey performs a comprehensive review of the literature in this field. First, we propose an abstract concept for AutoML for deep recommender systems (AutoRecSys) that describes its building blocks and distinguishes it from conventional AutoML techniques and recommender systems. Second, we present a taxonomy as a classification framework containing feature selection search, embedding dimension search, feature interaction search, model architecture search, and other components search. Furthermore, we put a particular emphasis on the search space and search strategy, as they are the common thread to connect all methods within each category and enable practitioners to analyze and compare various approaches. Finally, we propose four future promising research directions that will lead this line of research.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Australian Research Council["FT210100624","DP190101985"] ; National Natural Science Foundation of China[61761136008] ; Shenzhen Fundamental Research Program[JCYJ20200109141235597] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515110024] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:001068685300020
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582932
专题南方科技大学
作者单位
1.Univ Queensland, Brisbane, Qld 4072, Australia
2.Peking Univ, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
3.Southern Univ Sci & Technol, 1088 Xueyuan Blvd, Shenzhen 518055, Guangdong, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zheng, Ruiqi,Qu, Liang,Cui, Bin,et al. AutoML for Deep Recommender Systems: A Survey[J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS,2023,41(4).
APA
Zheng, Ruiqi,Qu, Liang,Cui, Bin,Shi, Yuhui,&Yin, Hongzhi.(2023).AutoML for Deep Recommender Systems: A Survey.ACM TRANSACTIONS ON INFORMATION SYSTEMS,41(4).
MLA
Zheng, Ruiqi,et al."AutoML for Deep Recommender Systems: A Survey".ACM TRANSACTIONS ON INFORMATION SYSTEMS 41.4(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Ruiqi]的文章
[Qu, Liang]的文章
[Cui, Bin]的文章
百度学术
百度学术中相似的文章
[Zheng, Ruiqi]的文章
[Qu, Liang]的文章
[Cui, Bin]的文章
必应学术
必应学术中相似的文章
[Zheng, Ruiqi]的文章
[Qu, Liang]的文章
[Cui, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。