中文版 | English
题名

An ensemble approach for enhancing generalization and extendibility of deep learning facilitated by transfer learning: principle and application in curing monitoring

作者
通讯作者Zhu, Jianjian
发表日期
2023-11-01
DOI
发表期刊
ISSN
0964-1726
EISSN
1361-665X
卷号32期号:11
摘要
Machine learning (ML) and deep learning (DL) have exhibited significant advantages compared to conventional data analysis methods. However, the limitations of poor generalization and extendibility impede the broader application of these methods beyond specific learning tasks. To address this challenge, this study proposes a transfer learning-based ensemble approach called SMART. This approach incorporates synthetic minority oversampling technique, average reinforced interpolation, series data imaging, and fine-tuning. To validate the effectiveness of SMART, we conduct experiments on curing monitoring of polymeric composites and construct a hybrid dataset with highly heterogeneous features. We compare the performance of SMART with exemplary ML algorithms using conventional evaluation indicators, including Accuracy, Precision, Recall, and F1-score. The experimental results demonstrate that the SMART approach exhibits superior generalization capacity and extendibility, achieving indicator scores above 0.9900 in new scenarios. These findings suggest that the proposed SMART approach has the potential to break through the limitations of conventional ML and DL models, enabling wider applications in the industrial sectors.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Dr Jianjian Zhu acknowledges the support from the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52205171). Professor Zhongqing Su acknowledges the support from the Hong Kong Research Grants Council via General Researc[52205171] ; Young Scientists Fund of the National Natural Science Foundation of China["15202820","15204419"]
WOS研究方向
Instruments & Instrumentation ; Materials Science
WOS类目
Instruments & Instrumentation ; Materials Science, Multidisciplinary
WOS记录号
WOS:001081583700001
出版者
EI入藏号
20234515021704
EI主题词
Deep learning ; Learning systems
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Chemical Reactions:802.2
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/582953
专题工学院_系统设计与智能制造学院
作者单位
1.Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
2.Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
3.Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
4.Univ Tokyo, Sch Engn, Tokyo, Japan
5.Hong Kong Polytech Univ, Ind Ctr, Kowloon, Hong Kong, Peoples R China
6.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Jianjian,Su, Zhongqing,Han, Zhibin,et al. An ensemble approach for enhancing generalization and extendibility of deep learning facilitated by transfer learning: principle and application in curing monitoring[J]. SMART MATERIALS AND STRUCTURES,2023,32(11).
APA
Zhu, Jianjian,Su, Zhongqing,Han, Zhibin,Lan, Zifeng,Wang, Qingqing,&Ho, Mabel Mei-po.(2023).An ensemble approach for enhancing generalization and extendibility of deep learning facilitated by transfer learning: principle and application in curing monitoring.SMART MATERIALS AND STRUCTURES,32(11).
MLA
Zhu, Jianjian,et al."An ensemble approach for enhancing generalization and extendibility of deep learning facilitated by transfer learning: principle and application in curing monitoring".SMART MATERIALS AND STRUCTURES 32.11(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Jianjian]的文章
[Su, Zhongqing]的文章
[Han, Zhibin]的文章
百度学术
百度学术中相似的文章
[Zhu, Jianjian]的文章
[Su, Zhongqing]的文章
[Han, Zhibin]的文章
必应学术
必应学术中相似的文章
[Zhu, Jianjian]的文章
[Su, Zhongqing]的文章
[Han, Zhibin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。