中文版 | English
题名

Curing process monitoring of polymeric composites with Gramian angular field and transfer learning-boosted convolutional neural networks

作者
通讯作者Zhu, Jianjian
发表日期
2023-11-01
DOI
发表期刊
ISSN
0964-1726
EISSN
1361-665X
卷号32期号:11
摘要
Continuous and accurate monitoring of the degree of curing (DoC) is essential for ensuring the structural integrity of fabricated composites during service. Although machine learning (ML) has shown effectiveness in DoC monitoring, its generalization and extendibility are limited when applied to other curing-related scenarios not included in the previous learning process. To break through this bottleneck, we propose a novel DoC monitoring approach that utilizes transfer learning (TL)-boosted convolutional neural networks alongside Gramian angular field-based imaging processing. The effectiveness of the proposed approach is validated through experiments on metal/polymeric composite co-bonded structures and carbon fiber reinforced polymers using raw sensor data separately collected through the electromechanical impedance and fiber Bragg grating (FBG) measurements. Four indicators, accuracy, precision, recall, and F1-score are introduced to evaluate the performance of generalization and extendibility of the proposed approach. The indicator scores of the proposed approach exceed 0.9900 and outperform other conventional ML algorithms on the FBG dataset of the target domain, demonstrating the effectiveness of the proposed approach in reusing the pre-trained base model on the composite curing monitoring issues.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Dr Jianjian Zhu acknowledges the project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52205171). Professor Zhongqing Su acknowledges the support from the Hong Kong Research Grants Council via General[52205171] ; Young Scientists Fund of the National Natural Science Foundation of China["15202820","15204419"]
WOS研究方向
Instruments & Instrumentation ; Materials Science
WOS类目
Instruments & Instrumentation ; Materials Science, Multidisciplinary
WOS记录号
WOS:001079308500001
出版者
EI入藏号
20234414988290
EI主题词
Carbon fiber reinforced plastics ; Convolution ; Convolutional neural networks ; Curing ; Machine learning ; Process control ; Process monitoring
EI分类号
Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Chemical Reactions:802.2 ; Polymer Products:817.1 ; Production Engineering:913.1
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/583001
专题工学院_系统设计与智能制造学院
作者单位
1.Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Peoples R China
2.Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Peoples R China
4.Xiamen Univ, Sch Aerosp Engn, Xiamen, Peoples R China
5.Chinese Univ Hong Kong, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Jianjian,Su, Zhongqing,Wang, Qingqing,et al. Curing process monitoring of polymeric composites with Gramian angular field and transfer learning-boosted convolutional neural networks[J]. SMART MATERIALS AND STRUCTURES,2023,32(11).
APA
Zhu, Jianjian,Su, Zhongqing,Wang, Qingqing,Yu, Yinghong,Wen, Jinshan,&Han, Zhibin.(2023).Curing process monitoring of polymeric composites with Gramian angular field and transfer learning-boosted convolutional neural networks.SMART MATERIALS AND STRUCTURES,32(11).
MLA
Zhu, Jianjian,et al."Curing process monitoring of polymeric composites with Gramian angular field and transfer learning-boosted convolutional neural networks".SMART MATERIALS AND STRUCTURES 32.11(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Jianjian]的文章
[Su, Zhongqing]的文章
[Wang, Qingqing]的文章
百度学术
百度学术中相似的文章
[Zhu, Jianjian]的文章
[Su, Zhongqing]的文章
[Wang, Qingqing]的文章
必应学术
必应学术中相似的文章
[Zhu, Jianjian]的文章
[Su, Zhongqing]的文章
[Wang, Qingqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。