中文版 | English
题名

A fast and globally optimal solution for RNA-seq quantification

作者
通讯作者Yi, Huiguang; Jin, Wenfei
共同第一作者Yi, Huiguang; Lin, Yanling
发表日期
2023-09-20
DOI
发表期刊
ISSN
1467-5463
EISSN
1477-4054
卷号24期号:5
摘要

Alignment-based RNA-seq quantification methods typically involve a time-consuming alignment process prior to estimating transcript abundances. In contrast, alignment-free RNA-seq quantification methods bypass this step, resulting in significant speed improvements. Existing alignment-free methods rely on the Expectation-Maximization (EM) algorithm for estimating transcript abundances. However, EM algorithms only guarantee locally optimal solutions, leaving room for further accuracy improvement by finding a globally optimal solution. In this study, we present TQSLE, the first alignment-free RNA-seq quantification method that provides a globally optimal solution for transcript abundances estimation. TQSLE adopts a two-step approach: first, it constructs a k-mer frequency matrix A for the reference transcriptome and a k-mer frequency vector b for the RNA-seq reads; then, it directly estimates transcript abundances by solving the linear equation A(T)Ax = A(T)b. We evaluated the performance of TQSLE using simulated and real RNA-seq data sets and observed that, despite comparable speed to other alignment-free methods, TQSLE outperforms them in terms of accuracy. TQSLE is freely available at .

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Funds for Shenzhen Basic Research Institutions[JCKY2020-44] ; National Key Ramp ; D Program of China[
WOS研究方向
Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目
Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号
WOS:001050942100001
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/583019
专题生命科学学院
作者单位
1.Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Beijing, Peoples R China
2.Southern Univ Sci & Technol, Sch Life Sci, Shenzhen, Peoples R China
第一作者单位生命科学学院
通讯作者单位生命科学学院
推荐引用方式
GB/T 7714
Yi, Huiguang,Lin, Yanling,Chang, Qing,et al. A fast and globally optimal solution for RNA-seq quantification[J]. BRIEFINGS IN BIOINFORMATICS,2023,24(5).
APA
Yi, Huiguang,Lin, Yanling,Chang, Qing,&Jin, Wenfei.(2023).A fast and globally optimal solution for RNA-seq quantification.BRIEFINGS IN BIOINFORMATICS,24(5).
MLA
Yi, Huiguang,et al."A fast and globally optimal solution for RNA-seq quantification".BRIEFINGS IN BIOINFORMATICS 24.5(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yi, Huiguang]的文章
[Lin, Yanling]的文章
[Chang, Qing]的文章
百度学术
百度学术中相似的文章
[Yi, Huiguang]的文章
[Lin, Yanling]的文章
[Chang, Qing]的文章
必应学术
必应学术中相似的文章
[Yi, Huiguang]的文章
[Lin, Yanling]的文章
[Chang, Qing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。