题名 | A fast and globally optimal solution for RNA-seq quantification |
作者 | |
通讯作者 | Yi, Huiguang; Jin, Wenfei |
共同第一作者 | Yi, Huiguang; Lin, Yanling |
发表日期 | 2023-09-20
|
DOI | |
发表期刊 | |
ISSN | 1467-5463
|
EISSN | 1477-4054
|
卷号 | 24期号:5 |
摘要 | Alignment-based RNA-seq quantification methods typically involve a time-consuming alignment process prior to estimating transcript abundances. In contrast, alignment-free RNA-seq quantification methods bypass this step, resulting in significant speed improvements. Existing alignment-free methods rely on the Expectation-Maximization (EM) algorithm for estimating transcript abundances. However, EM algorithms only guarantee locally optimal solutions, leaving room for further accuracy improvement by finding a globally optimal solution. In this study, we present TQSLE, the first alignment-free RNA-seq quantification method that provides a globally optimal solution for transcript abundances estimation. TQSLE adopts a two-step approach: first, it constructs a k-mer frequency matrix A for the reference transcriptome and a k-mer frequency vector b for the RNA-seq reads; then, it directly estimates transcript abundances by solving the linear equation A(T)Ax = A(T)b. We evaluated the performance of TQSLE using simulated and real RNA-seq data sets and observed that, despite comparable speed to other alignment-free methods, TQSLE outperforms them in terms of accuracy. TQSLE is freely available at . |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Funds for Shenzhen Basic Research Institutions[JCKY2020-44]
; National Key Ramp
; D Program of China[
|
WOS研究方向 | Biochemistry & Molecular Biology
; Mathematical & Computational Biology
|
WOS类目 | Biochemical Research Methods
; Mathematical & Computational Biology
|
WOS记录号 | WOS:001050942100001
|
出版者 | |
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/583019 |
专题 | 生命科学学院 |
作者单位 | 1.Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Beijing, Peoples R China 2.Southern Univ Sci & Technol, Sch Life Sci, Shenzhen, Peoples R China |
第一作者单位 | 生命科学学院 |
通讯作者单位 | 生命科学学院 |
推荐引用方式 GB/T 7714 |
Yi, Huiguang,Lin, Yanling,Chang, Qing,et al. A fast and globally optimal solution for RNA-seq quantification[J]. BRIEFINGS IN BIOINFORMATICS,2023,24(5).
|
APA |
Yi, Huiguang,Lin, Yanling,Chang, Qing,&Jin, Wenfei.(2023).A fast and globally optimal solution for RNA-seq quantification.BRIEFINGS IN BIOINFORMATICS,24(5).
|
MLA |
Yi, Huiguang,et al."A fast and globally optimal solution for RNA-seq quantification".BRIEFINGS IN BIOINFORMATICS 24.5(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论