中文版 | English
题名

Research on Temperature Sensing Characteristics of Micro-Nano Fiber Interferometer Based on Different Configurations in Fiber Laser

姓名
姓名拼音
LIN Weihao
学号
11953003
学位类型
博士
学位专业
电机及电脑工程
导师
邵理阳
导师单位
电子与电气工程系
外机构导师
韦孟宇
外机构导师单位
澳门大学
论文答辩日期
2023-11-03
论文提交日期
2023-11-16
学位授予单位
澳门大学
学位授予地点
澳门
摘要

Temperature sensor is a common piece of equipment in daily life. It is extensively employed in fields including biological sciences, oceanography and contemporary city planning. Among them, optical fiber is regarded as a superb example of a high-value sensing materials in practical use because of its compact size, light weight, resistance to corrosion, and ability to prevent electromagnetic interference in nano devices. The specific principle of temperature sensing via optical fiber is demonstrated. The three indicators for optical sensors are detection sensitivity, system stability, and response time. A very low level of sensitivity leads to a huge detection error, which will affect its practicality. Poor system stability results in a high rate of false positives, which cannot be tolerated for environmental surveillance. In the process of minute-by-minute modernization, response speed is also crucial. By avoiding unnecessary troubles in the actual temperature monitoring process, the feasibility of the system can be greatly improved.

The thesis will concentrate on the generation of laser and wavelength shift as the starting point, then introduce the fiber laser sensor working principle systematically, and thoroughly investigate the stimulated radiation amplified light sustained operation. The improvement of detection sensitivity will be the first major chapter of this thesis. The thermal-optical effects of some solutions will be fully exploited. With systematically studied, fully understand and reasonable application of unique high thermal-optical coefficient materials, particularly liquid crystal (LC) and isopropanol, the sensitivity of fiber senser will be increased by an order of magnitude.

One of the most fundamental indicators for the temperature monitoring of various real-world application situations in the process of contemporary urbanization is stability. The scope of application and duration of use of the sensor are determined by iii the system’s reliability. Therefore, another chapter carefully explains how to increase system reliability by streamlining the system architecture. The doped fiber functioning as a gain, filter, and sensing element in the system rather than just a straightforward gain medium is designed.

Additionally, the optical spectrum analyzer (OSA) demodulation instrument is almost exclusively used in the conventional optical fiber temperature demodulation system, which has a high cost and a slow reaction speed. In order to make the most fully utilize of theoretical potential of sensors as possible, a novel demodulation scheme is required. As a result, a time-domain demodulation method based on timestretching that uses a dispersive fiber to map interference on the wavelength domain into time domain is proposed. Moreover, the precision of the system and temperature measurement is simultaneously improved by the deployment of a one-dimensional (1D) Convolutional neural network (CNN). The fiber laser temperature sensing system is at the center of the discussion, and thanks to improvements in three-dimensional: sensitivity, system simplification, and response time, fiber temperature sensors are now much more practical. The technology will be crucial in the nurturing of cell life, the monitoring of deep-sea temperatures, and the monitoring of body temperatures.

 

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-11
参考文献列表

[1] Su, H. L., Wang, Y. X., Guan, C. S., Yu, S., Yu, X. Y., & Yang, W. L. (2022). PDMS-sensitized MZI fiber optic temperature sensor based on TCF-NCF-TCF structure. Optical Fiber Technology, 73.
[2] Liu, Y. X., Zhang, Y. N., Han, B., Zhao, J. C., Li, X. G., & Zhao, Y. (2023). Sensing characteristics of a compact gourd-type MZ interferometer based on hollow-core fiber. Optics and Lasers in Engineering, 164.
[3] Wu, D., Zhu, T., Chiang, K. S., & Deng, M. (2012). All Single-Mode Fiber Mach-Zehnder Interferometer Based on Two Peanut-Shape Structures. Journal of Lightwave Technology, 30(5), 805-810.
[4] Hua, P., Jonathan Luff, B., Quigley, G. R., Wilkinson, J. S., & Kawaguchi, K. (2002). Integrated optical dual Mach–Zehnder interferometer sensor. Sensors and Actuators B: Chemical, 87(2), 250-257.
[5] Li, Y., Chen, L. A., Harris, E., & Bao, X. Y. (2010). Double-Pass In-Line Fiber Taper Mach-Zehnder Interferometer Sensor. Ieee Photonics Technology Letters, 22(23), 1750-1752.
[6] Zhu, T., Wu, D., Liu, M., & Duan, D. W. (2012). In-line fiber optic interferometric sensors in single-mode fibers. Sensors (Basel), 12(8), 10430-10449.
[7] Wu, D., Zhu, T., & Liu, M. (2012). A high temperature sensor based on a peanut-shape structure Michelson interferometer. Optics Communications, 285(24), 5085-5088.
[8] Zhao, Y. J., Zhou, A., Guo, H. Y., Zheng, Z., Xu, Y. M., Zhou, C. M., & Yuan, L. B. (2018). An Integrated Fiber Michelson Interferometer Based on Twin-Core and Side-Hole Fibers for Multiparameter Sensing. Journal of Lightwave Technology, 36(4), 993-997.
[9] Li, L. J., Ma, Q., Cao, M. Y., Zhang, G. N., Zhang, Y., Jiang, L., Gao, C. T., Yao, J., Gong, S. S., & Li, W. X. (2016). High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror. Sensors and Actuators B-Chemical, 234, 674-679.
[10] Zhao, Y., Dai, M., Chen, Z., Liu, X., Gandhi, M. S. A., Li, Q., & Fu, H. Y. (2021). Ultrasensitive temperature sensor with Vernier-effect improved fiber Michelson interferometer. Opt Express, 29(2), 1090-1101.
[11] Lee, C. E., & Taylor, H. F. (1991). Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source. Journal of Lightwave Technology, 9(1), 129-134.
[12] Favero, F. C., Araujo, L., Bouwmans, G., Finazzi, V., Villatoro, J., & Pruneri, V. (2012). Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing. Opt Express, 20(7), 7112-7118.
[13] Nguyen, L. V., Vasiliev, M., & Alameh, K. (2011). Three-Wave Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Temperature and Water Salinity of Seawater. IEEE Photonics Technology Letters, 23(7), 450-452.
[14] Yang, Y., Wang, Y., Zhao, Y., Jiang, J., He, X., Yang, W., Zhu, Z., Gao, W., & Li, L. (2017). Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity. Optics Express, 25(26).
[15] Zhang, Z., He, J., Du, B., Zhang, F., Guo, K., & Wang, Y. (2018). Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers. Opt Lett, 43(24), 6009-6012.
[16] Shao, L.-Y., Luo, Y., Zhang, Z., Zou, X., Luo, B., Pan, W., & Yan, L. (2015). Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect. Optics Communications, 336, 73-76.
[17] Frazao, O., Silva, S. O., Baptista, J. M., Santos, J. L., Statkiewicz-Barabach, G., Urbanczyk, W., & Wojcik, J. (2008). Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber. Appl Opt, 47(27), 4841-4848.
[18] Cui, Y., Shum, P. P., Hu, D. J. J., Wang, G., Humbert, G., & Dinh, X.-Q. (2012). Temperature Sensor by Using Selectively Filled Photonic Crystal Fiber Sagnac Interferometer. IEEE Photonics Journal, 4(5), 1801-1808.
[19] Liu, Q., Li, S.-G., & Chen, H. (2018). Enhanced sensitivity of temperature sensor by a PCF with a defect core based on Sagnac interferometer. Sensors and Actuators B: Chemical, 254, 636-641.
[20] Yang, X., Zhao, C.-L., Peng, Q., Zhou, X., & Lu, C. (2005). FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter. Optics Communications, 250(1-3), 63-68.
[21] Wang, H., Li, C., Liang, L., Jiang, K., Dai, S., Wu, H., & Tong, X. (2023). Fast response characteristics of fiber Bragg grating temperature sensors and explosion temperature measurement tests. Sensors and Actuators A: Physical, 354.
[22] Buchfellner, F., Stadler, A., Bian, Q., Hennesen, M., Zeisberger, A., Koch, A. W., & Roths, J. (2022). Generalized and wavelength-dependent temperature calibration function for multipoint regenerated fiber Bragg grating sensors. Opt Express, 30(25), 44769-44784.
[23] Liu, Y., Xie, S., Zheng, Y., & Yang, X. (2022). Simultaneous measurement of refractive index and temperature based on tapered no-core fiber cascaded with a fiber Bragg grating. Results in Optics, 9.
[24] Chen, S., Vilchis-Rodriguez, D., Djurovic, S., Barnes, M., McKeever, P., & Jia, C. (2022). FBG Head Size Influence on Localized On-Chip Thermal Measurement in IGBT Power Modules. IEEE Sensors Journal, 22(22), 21684-21693.
[25] Li, X., Zhang, H., Chen, N., Wang, Y., Gao, X., & Zhou, X. (2022). Simultaneous Detection of Magnetic Field and Temperature Using Micro-Nanofiber Cascaded Fiber Bragg Grating Structure. IEEE Sensors Journal, 22(20), 19267-19272.
[26] Jiang, L., Yang, J., Wang, S., Li, B., & Wang, M. (2011). Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Optics Letters, 36(19).
[27] Yao, Q., Meng, H., Wang, W., Xue, H., Xiong, R., Huang, B., Tan, C., & Huang, X. (2014). Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating. Sensors and Actuators A: Physical, 209, 73-77.
[28] Wang, Y., Li, Y., Liao, C., Wang, D. N., Yang, M., & Lu, P. (2010). High-Temperature Sensing Using Miniaturized Fiber In-Line Mach–Zehnder Interferometer. IEEE Photonics Technology Letters, 22(1), 39-41.
[29] Woong-Gyu, J., Sang-Woo, K., Kwang-Taek, K., Eung-Soo, K., & Shin-Won, K. (2001). High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide. IEEE Photonics Technology Letters, 13(11), 1209-1211.
[30] Gaston, A., Lozano, I., Perez, F., Auza, F., & Sevilla, J. (2003). Evanescent wave optical-fiber sensing (temperature, relative humidity, and ph sensors). IEEE Sensors Journal, 3(6), 806-811.
[31] Dikovska, A. O., Atanasova, G. B., Nedyalkov, N. N., Stefanov, P. K., Atanasov, P. A., Karakoleva, E. I., & Andreev, A. T. (2010). Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber. Sensors and Actuators B: Chemical, 146(1), 331-336.
[32] Weng, S., Pei, L., Liu, C., Wang, J., Li, J., & Ning, T. (2016). Double-Side Polished Fiber SPR Sensor for Simultaneous Temperature and Refractive Index Measurement. IEEE Photonics Technology Letters, 28(18), 1916-1919.
[33] Datta, P., Matías, I., Aramburu, C., Bakas, A., López-Amo, M., & Otón, J. M. (1996). Tapered optical-fiber temperature sensor. Microwave and Optical Technology Letters, 11(2), 93-95.
[34] Sun, Q., Luo, H., Luo, H., Lai, M., Liu, D., & Zhang, L. (2015). Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection. Opt Express, 23(10), 12777-12783.
[35] Wu, Q., Qu, Y., Liu, J., Yuan, J., Wan, S.-P., Wu, T., He, X.-D., Liu, B., Liu, D., Ma, Y., Semenova, Y., Wang, P., Xin, X., & Farrell, G. (2021). Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sensors Journal, 21(11), 12734-12751.
[36] Soltanian, M. R. K., Sharbirin, A. S., Ariannejad, M. M., Amiri, I. S., De La Rue, R. M., Brambilla, G., Rahman, B. M. A., Grattan, K. T. V., & Ahmad, H. (2016). Variable Waist-Diameter Mach–Zehnder Tapered-Fiber Interferometer as Humidity and Temperature Sensor. IEEE Sensors Journal, 16(15), 5987-5992.
[37] Zhao, L., Jiang, L., Wang, S., Xiao, H., Lu, Y., & Tsai, H. L. (2011). A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing. Sensors (Basel), 11(1), 54-61.
[38] Liao, C. R., Chen, H. F., & Wang, D. N. (2014). Ultracompact Optical Fiber Sensor for Refractive Index and High-Temperature Measurement. Journal of Lightwave Technology, 32(14), 2531-2535.
[39] Poeggel, S., Duraibabu, D., Kalli, K., Leen, G., Dooly, G., Lewis, E., Kelly, J., & Munroe, M. (2015). Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors. Biosensors (Basel), 5(3), 432-449.
[40] Kaur, A., Watkins, S. E., Huang, J., Yuan, L., & Xiao, H. (2014). Microcavity strain sensor for high temperature applications. Optical Engineering, 53(1).
[41] Wang, J., Li, Z., Fu, X., Gui, X., Zhan, J., Wang, H., & Jiang, D. (2020). High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulsewidth. Opt Express, 28(11), 16045-16056.
[42] Yan, H., Li, P., Zhang, H., Shen, X., & Wang, Y. (2017). A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice. Photonic Sensors, 7(4), 372-376.
[43] Chou, Y.-L., Wu, C.-W., Jhang, R.-T., & Chiang, C.-C. (2019). A novel optical fiber temperature sensor with polymer-metal alternating structure. Optics & Laser Technology, 115, 186-192.
[44] Li, J., Nie, Q., Gai, L., Li, H., & Hu, H. (2017). Highly Sensitive Temperature Sensing Probe Based on Deviation S-Shaped Microfiber. Journal of Lightwave Technology, 35(17), 3699-3704.
[45] Wang, T., Liu, B., Zhao, L., Wu, Y., Han, Y., Nan, T., Wang, J., Zheng, J., & Zhang, Y. (2021). Enhanced refractive index and temperature sensor based on balloon-shaped Mach-Zehnder interferometer. Optical Fiber Technology, 65.
[46] Wang, Y., Huang, Q., Zhu, W., Yang, M., & Lewis, E. (2018). Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt Express, 26(2), 1910-1917.
[47] Wang, J.-K., Ying, Y., Gao, Z.-J., Cheng, S.-Y., & Si, G.-Y. (2021). Surface plasmon resonance (SPR) based temperature and magnetic field sensor in a dual-core D-shaped photonic crystal fiber (PCF). Instrumentation Science & Technology, 50(3), 271-287.
[48] Xin, Y., Zhao, M., Zhao, H., Gong, H., Shen, C., Zhao, C.-L., & Dong, X. (2018). Alcohol-filled side-hole fiber based Mach-Zehnder interferometer for temperature measurement. Optical Fiber Technology, 46, 72-76.
[49] Xin, Y., Dong, X., Meng, Q., Qi, F., & Zhao, C.-L. (2013). Alcohol-filled side-hole fiber Sagnac interferometer for temperature measurement. Sensors and Actuators A: Physical, 193, 182-185
[50] Yu, Z., Lang, T., Hu, J., Chen, M., Ding, K., & Shao, L. Y. (2021). High sensitivity temperature sensor based on a side-hole fiber. Appl Opt, 60(12), 3474-3481.
[51] Liu, Y.-g., Liu, X., Zhang, T., & Zhang, W. (2018). Integrated FPI-FBG composite all-fiber sensor for simultaneous measurement of liquid refractive index and temperature. Optics and Lasers in Engineering, 111, 167-171.
[52] Su, H., Zhao, C., Song, X., Kong, F., Zhang, Z., & Liu, C. (2021). High-sensitivity optical fiber temperature sensor with cascaded configuration of MZI and FPI based on Vernier effect. Optical Fiber Technology, 67.
[53] Liu, Y., Zhang, T., Wang, Y., Yang, D., Liu, X., Fu, H., & Jia, Z. (2018). Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip. Optical Fiber Technology, 46, 77-82.
[54] Bae, H., Yun, D., Liu, H., Olson, D. A., & Yu, M. (2014). Hybrid Miniature Fabry–Perot Sensor with Dual Optical Cavities for Simultaneous Pressure and Temperature Measurements. Journal of Lightwave Technology, 32(8), 1585-1593.
[55] Choi, H. Y., Mudhana, G., Park, K. S., Paek, U. C., & Lee, B. H. (2010). Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt Express, 18(1), 141-149.
[56] Choi, H. Y., Park, K. S., Park, S. J., Paek, U. C., Lee, B. H., & Choi, E. S. (2008). Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt Lett, 33(21), 2455-2457.
[57] Zhao, X., Wu, X., Zuo, C., Mu, S., Zhang, W., Shi, J., Gui, L., Guang, D., & Yu, B. (2022). Miniatured Fabry-Perot strain probe based on anti-resonant hollow core fiber. Measurement, 203.
[58] Kangpeng, Z., Wei, H., Wen, Z., Mingli, D., & Lianqing, Z. (2019). A Dual-parameter Fabry–Perot Interferometer Sensor Based on Single Mode-Photonic Crystal-Multimode Fiber Structure. Instruments and Experimental Techniques, 62(3), 426-431.
[59] Abbas, L. G., & Li, H. (2021). Temperature sensing by hybrid interferometer based on Vernier like effect. Optical Fiber Technology, 64.
[60] Abbas, L. G., Mumtaz, F., Parveen, R., Dai, Y., & Ashraf, M. A. (2022). An efficacious hybrid interferometer based on a Vernier-like effect for dual parameter sensing. Optik, 264.
[61] Wu, S., Yan, G., Lian, Z., Chen, X., Zhou, B., & He, S. (2016). An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature. Sensors and Actuators B: Chemical, 225, 50-56.
[62] Abbas, L. G., Ai, Z., Mumtaz, F., Muhammad, A., Dai, Y., & Parveen, R. (2021). Temperature and Strain Sensing With Hybrid Interferometer. IEEE Sensors Journal, 21(23), 26785-26792.
[63] Lu, Y., Han, M., & Tian, J. (2014). Fiber-Optic Temperature Sensor Using a Fabry–Pérot Cavity Filled With Gas of Variable Pressure. IEEE Photonics Technology Letters, 26(8), 757-760.
[64] Chen, M.-q., Zhao, Y., Xia, F., Peng, Y., & Tong, R.-j. (2018). High sensitivity temperature sensor based on fiber air-microbubble Fabry-Perot interferometer with PDMS-filled hollow-core fiber. Sensors and Actuators A: Physical, 275, 60-66.
[65] He, C., Zhou, C., Zhou, Q., Xie, S., Xiao, M., Tian, J., & Yao, Y. (2021). Simultaneous measurement of strain and temperature using Fabry–Pérot interferometry and antiresonant mechanism in a hollow-core fiber. Chinese Optics Letters, 19(4).
[66] Liao, Y., Liu, Y., Li, Y., Lang, C., Cao, K., & Qu, S. (2019). Large-Range, Highly-Sensitive, and Fast-Responsive Optical Fiber Temperature Sensor Based on the Sealed Ethanol in Liquid State Up to its Supercritical Temperature. IEEE Photonics Journal, 11(6), 1-12.
[67] Tian, J., Lu, Z., Quan, M., Jiao, Y., & Yao, Y. (2016). Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber. Opt Express, 24(18), 20132-20142.
[68] Wu, N., Xia, M., Wu, Y., Li, S., Qi, R., Huang, Y., & Xia, L. (2021). Microwave photonics interrogation for multiplexing fiber Fabry-Perot sensors. Opt Express, 29(11), 16652-16664.
[69] Yu, Y., Chen, X., Huang, Q., Du, C., Ruan, S., & Wei, H. (2015). Enhancing the pressure sensitivity of a Fabry–Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel. Applied Physics B, 120(3), 461-467.
[70] Zhang, G., Zhang, W., Gui, L., Li, S., Fang, S., Zuo, C., Wu, X., & Yu, B. (2020). Ultra-sensitive high temperature sensor based on a PMPCF tip cascaded with an ECPMF Sagnac loop. Sensors and Actuators A: Physical, 314.
[71] Tan, X., Geng, Y., Li, X., Gao, R., & Yin, Z. (2013). High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer. Appl Opt, 52(34), 8195-8198.
[72] Chen, L., Tian, J., Wu, Q., & Yao, Y. (2023). Ultrahigh Sensitivity Temperature Sensor Based on Harmonic Vernier Effect. IEEE Sensors Journal, 23(1), 381-388.
[73] Hu, Y., Wei, H., Ma, Z., Zhang, L., Pang, F., & Wang, T. (2022). Microbubble-based optical fiber Fabry-Perot sensor for simultaneous high-pressure and high-temperature sensing. Opt Express, 30(19), 33639-33651.
[74] Ferreira, M. S., Bierlich, J., Kobelke, J., Pinto, J. L., & Wondraczek, K. (2021). Negative curvature hollow core fiber sensor for the measurement of strain and temperature. Opt Express, 29(4), 5808-5818.
[75] Zheng, W., Xie, J., Li, Y., Xu, B., Kang, J., Shen, C., Wang, J., Jin, Y., Liu, H., Ni, K., Dong, X., Zhao, C., & Jin, S. (2014). A fiber air-gap Fabry–Pérot temperature sensor demodulated by using frequency modulated continuous wave. Optics Communications, 324, 234-237.
[76] Zhang, C., Cui, G., Miao, C., Zhang, S., Li, H., Zhao, J., & Wu, J. (2021). A Fabry-Perot temperature sensor sealed with thermo-sensitive polymer. Results in Optics, 5.
[77] Xu, B., Li, P., Wang, D. N., Zhao, C.-L., Dai, J., & Yang, M. (2017). Hydrogen sensor based on polymer-filled hollow core fiber with Pt-loaded WO3/SiO2 coating. Sensors and Actuators B: Chemical, 245, 516-523.
[78] Gao, H., Xu, D., Ye, Y., Zhang, Y., Shen, J., & Li, C. (2022). Fiber-tip polymer filled probe for high-sensitivity temperature sensing and polymer refractometers. Opt Express, 30(5), 8104-8114.
[79] Pawar, D., Kumar, A., Kanawade, R., Mondal, S., & Sinha, R. K. (2019). Negative axicon tip micro-cavity with a polymer incorporated optical fiber temperature sensor. OSA Continuum, 2(8).
[80] Tan, X., Li, X., Geng, Y., Yin, Z., Wang, L., Wang, W., & Deng, Y. (2015). Polymer Microbubble-Based Fabry–Perot Fiber Interferometer and Sensing Applications. IEEE Photonics Technology Letters, 27(19), 2035-2038.
[81] Wu, D., Zhao, Y., & Hu, H. (2014). Experimental research on FLM temperature sensor with an ethanol-filled photonic crystal fiber. Sensors and Actuators A: Physical, 209, 62-67.
[82] Lv, R., Zhao, Y., & Wang, Q. (2014). An Optical Fiber Temperature Sensor Based on an Ethanol Filled Fabry-Perot Cavity. Instrumentation Science & Technology, 42(4), 402-411.
[83] Feng, M., Wang, S., Wang, S., & Mao, L. (2019). A miniature inline fiber temperature sensor based on a silica capillary partially filled with ethanol. Optik, 193.
[84] Duong, H. D., & Rhee, J. I. (2008). Enhancement of the sensitivity of a quantum dot-based fiber optic temperature sensor using the sol–gel technique. Sensors and Actuators B: Chemical, 134(2), 423-426.
[85] Zhang, G., Yu, B., Cao, Z., Lu, L., Xu, F., Zhuang, Z., & Wang, Y. (2020). A Low Loss Quantum-Dot-Doped Optical Fiber Temperature Sensor Based on Flexible Print Technology. IEEE Photonics Journal, 12(3), 1-8.
[86] Wang, W., Yin, X., Wu, J., Yu, Y., Geng, Y., Tan, X., Du, Y., Hong, X., & Li, X. (2016). Quantum Dots-Based Multiplexed Fiber-Optic Temperature Sensors. IEEE Sensors Journal, 16(8), 2437-2441.
[87] Yin, X., & Li, X. (2014). Temperature Sensor Based on Quantum Dots Solution Encapsulated in Photonic Crystal Fiber. IEEE Sensors Journal, 1-1.
[88] Du, C., Wang, Q., & Zhao, Y. (2018). Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sensors and Actuators A: Physical, 278, 78-84.
[89] Di, C., & Chen, H. (2022). Highly sensitive temperature sensor based on a liquid crystal selectively infiltrated two-core photonic crystal fiber. Optik, 268.
[90] Ma, M., Chen, H., Li, S., Jing, X., Zhang, W., Liu, Y., & Zhu, E. (2019). Highly sensitive temperature sensor based on Sagnac interferometer with liquid crystal photonic crystal fibers. Optik, 179, 665-671.
[91] Wang, E., Cheng, P., Li, J., Cheng, Q., Zhou, X., & Jiang, H. (2020). High-sensitivity temperature and magnetic sensor based on magnetic fluid and liquid ethanol filled micro-structured optical fiber. Optical Fiber Technology, 55.
[92] Li, C., Ning, T., Wen, X., Li, J., Zhang, C., & Zhang, C. (2015). Magnetic field and temperature sensor based on a no-core fiber combined with a fiber Bragg grating. Optics & Laser Technology, 72, 104-107.
[93] Li, B., Zhang, F., Yan, X., Zhang, X., Wang, F., & Cheng, T. (2022). An Optical Fiber-Based Surface Plasmon Resonance Sensor for Simultaneous Measurement of Temperature and Magnetic Field Intensity. IEEE Transactions on Instrumentation and Measurement, 71, 1-7.
[94] Velázquez-González, J. S., Monzón-Hernández, D., Moreno-Hernández, D., Martínez-Piñón, F., & Hernández-Romano, I. (2017). Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sensors and Actuators B: Chemical, 242, 912-920.
[95] Zhu, Z., Liu, L., Liu, Z., Zhang, Y., & Zhang, Y. (2017). Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt Lett, 42(15), 2948-2951.
[96] Jorgenson, R. C., & Yee, S. S. (1993). A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 12(3), 213-220.
[97] Xuewen, S., Lin, Z., & Bennion, I. (2002). Sensitivity characteristics of long-period fiber gratings. Journal of Lightwave Technology, 20(2), 255-266.
[98] Albert, J., Shao, L.-Y., & Caucheteur, C. (2013). Tilted fiber Bragg grating sensors. Laser & Photonics Reviews, 7(1), 83-108.
[99] Leung, A., Shankar, P. M., & Mutharasan, R. (2007). A review of fiber-optic biosensors. Sensors and Actuators B: Chemical, 125(2), 688-703.
[100] Kirkendall, C. K., & Dandridge, A. (2004). Overview of high performance fibre-optic sensing. Journal of Physics D: Applied Physics, 37(18), R197-R216.
[101] Wu, D. K., Kuhlmey, B. T., & Eggleton, B. J. (2009). Ultrasensitive photonic crystal fiber refractive index sensor. Opt Lett, 34(3), 322-324.
[102] Tian, Z., Yam, S. S. H., Barnes, J., Bock, W., Greig, P., Fraser, J. M., Loock, H.-P., & Oleschuk, R. D. (2008). Refractive Index Sensing With Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers. IEEE Photonics Technology Letters, 20(8), 626-628.
[103] Bai-Ou, G., Hwa-Yaw, T., Sien-Ting, L., & Chan, H. L. W. (2005). Ultrasonic hydrophone based on distributed Bragg reflector fiber laser. IEEE Photonics Technology Letters, 17(1), 169-171.
[104] Liu, W., Guo, T., Wong, A. C., Tam, H. Y., & He, S. (2010). Highly sensitive bending sensor based on Er3+-doped DBR fiber laser. Opt Express, 18(17), 17834-17840.
[105] Wo, J., Jiang, M., Malnou, M., Sun, Q., Zhang, J., Shum, P. P., & Liu, D. (2012). Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser. Opt Express, 20(3), 2844-2850.
[106] Shao, L.-Y., Lau, S.-T., Dong, X., Zhang, A. P., Chan, H. L. W., Tam, H. Y., & He, S. (2008). High-Frequency Ultrasonic Hydrophone Based on a Cladding-Etched DBR Fiber Laser. IEEE Photonics Technology Letters, 20(8), 548-550.
[107] Zhao, Y., Chang, J., Wang, Q., Ni, J., Song, Z., Qi, H., Wang, C., Wang, P., Gao, L., Sun, Z., Lv, G., Liu, T., & Peng, G. (2013). Research on a novel composite structure Er(3)(+)-doped DBR fiber laser with a pi-phase shifted FBG. Opt Express, 21(19), 22515-22522.
[108] Hadeler, O., Ronnekleiv, E., Ibsen, M., & Laming, R. I. (1999). Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements. Appl Opt, 38(10), 1953-1958.
[109] Cranch, G. A., Flockhart, G. M. H., & Kirkendall, C. K. (2008). Distributed Feedback Fiber Laser Strain Sensors. IEEE Sensors Journal, 8(7), 1161-1172.
[110] Wu, H., Dong, L., Zheng, H., Liu, X., Yin, X., Ma, W., Zhang, L., Yin, W., Jia, S., & Tittel, F. K. (2015). Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser. Sensors and Actuators B: Chemical, 221, 666-672.
[111] Løvseth, S. W., Kringlebotn, J. T., Rønnekleiv, E., & Bløtekjær, K. (1999). Fiber distributed-feedback lasers used as acoustic sensors in air. Applied Optics, 38(22).
[112] Muanenda, Y., Oton, C. J., Faralli, S., & Di Pasquale, F. (2016). A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR. IEEE Photonics Journal, 8(1), 1-10.
[113] Frank, A., Bohnert, K., Haroud, K., Brandle, H., Poulsen, C. V., Pedersen, J. E., & Patscheider, J. (2003). Distributed feedback fiber laser sensor for hydrostatic pressure. IEEE Photonics Technology Letters, 15(12), 1758-1760.
[114] Talaverano, L., Abad, S., Jarabo, S., & Lopez-Amo, M. (2001). Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability. Journal of Lightwave Technology, 19(4), 553-558.
[115] Youlong, Y., Luenfu, L., Hwayaw, T., & Wenghong, C. (2001). Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system. IEEE Photonics Technology Letters, 13(7), 702-704.
[116] Shi, J., Wang, Y., Xu, D., Zhang, H., Su, G., Duan, L., Yan, C., Yan, D., Fu, S., & Yao, J. (2016). Temperature Sensor Based on Fiber Ring Laser With Sagnac Loop. IEEE Photonics Technology Letters, 28(7), 794-797.
[117] Qingqiang, M., Xinyong, D., Kai, N., Yi, L., Ben, X., & Zhemin, C. (2014). Optical Fiber Laser Salinity Sensor Based on Multimode Interference Effect. IEEE Sensors Journal, 14(6), 1813-1816.
[118] Zuowei, Y., Liang, G., Shengchun, L., Liang, Z., Feixiang, W., Lin, C., & Xiangfei, C. (2010). Fiber Ring Laser Sensor for Temperature Measurement. Journal of Lightwave Technology.
[119] Xiao, S., Zhang, L., Wei, D., Liu, F., Zhang, Y., & Xiao, M. (2018). Orbital angular momentum-enhanced measurement of rotation vibration using a Sagnac interferometer. Opt Express, 26(2), 1997-2005.
[120] Ma, L., Chen, C., Zhou, L., Jiang, S., & Zhang, H. (2019). Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity. Applied Physics Letters, 114(8).
[121] Pang, F., Zheng, H., Liu, H., Yang, J., Chen, N., Shang, Y., Ramachandran, S., & Wang, T. (2019). The Orbital Angular Momentum Fiber Modes for Magnetic Field Sensing. IEEE Photonics Technology Letters, 31(11), 893-896.
[122] Fu, H., Wang, S., Chang, H., & You, Y. (2020). A high resolution and large range fiber Bragg grating temperature sensor with vortex beams. Optical Fiber Technology, 60.
[123] Liu, E., Yan, B., Zhou, H., Liu, Y., Liu, G., & Liu, J. (2021). OAM mode-excited surface plasmon resonance for refractive index sensing based on a photonic quasi-crystal fiber. Journal of the Optical Society of America B, 38(12).
[124] Kamruzzaman, M. M., Mhatli, S., Arun Kumar, U., Roopa Jayasingh, J., & Sivasakthiselvan, S. (2022). Design of circular photonic crystal fiber for OAM extraction SDM applications. Optical and Quantum Electronics, 54(12).
[125] Taimre, T., Nikolić, M., Bertling, K., Lim, Y. L., Bosch, T., & Rakić, A. D. (2015). Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Advances in Optics and Photonics, 7(3).
[126] Yu, Y., Giuliani, G., & Donati, S. (2004). Measurement of the Linewidth Enhancement Factor of Semiconductor Lasers Based on the Optical Feedback Self-Mixing Effect. IEEE Photonics Technology Letters, 16(4), 990-992.
[127] Bosch, T. (2001). Optical feedback interferometry for sensing application. Optical Engineering, 40(1).
[128] Bes, C., Plantier, G., & Bosch, T. (2006). Displacement Measurements Using a Self-Mixing Laser Diode Under Moderate Feedback. IEEE Transactions on Instrumentation and Measurement, 55(4), 1101-1105.
[129] Scalise, L., Yu, Y., Giuliani, G., Plantier, G., & Bosch, T. (2004). Self-Mixing Laser Diode Velocimetry: Application to Vibration and Velocity Measurement. IEEE Transactions on Instrumentation and Measurement, 53(1), 223-232.
[130] Fan, Y., Yu, Y., Xi, J., & Chicharo, J. F. (2011). Improving the measurement performance for a self-mixing interferometry-based displacement sensing system. Appl Opt, 50(26), 5064-5072.
[131] Wang, R., Zhang, H., Liu, Q., Liu, F., Han, X., Liu, X., Li, K., Xiao, G., Albert, J., Lu, X., & Guo, T. (2022). Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat Commun, 13(1), 547.
[132] Albero Blanquer, L., Marchini, F., Seitz, J. R., Daher, N., Betermier, F., Huang, J., Gervillie, C., & Tarascon, J. M. (2022). Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat Commun, 13(1), 1153.
[133] Liu, Y., Liu, Z., Mei, W., Han, X., Liu, P., Wang, C., Xia, X., Li, K., Wang, S., Wang, Q., & Guo, T. (2022). Operando monitoring Lithium-ion battery temperature via implanting femtosecond-laser-inscribed optical fiber sensors. Measurement, 203.
[134] Xi, J., Li, J., Sun, H., Ma, T., Deng, L., Liu, N., Huang, X., & Zhang, J. (2022). In-situ monitoring of internal temperature and strain of solid-state battery based on optical fiber sensors. Sensors and Actuators A: Physical, 347.
[135] Miele, E., Dose, W. M., Manyakin, I., Frosz, M. H., Ruff, Z., De Volder, M. F. L., Grey, C. P., Baumberg, J. J., & Euser, T. G. (2022). Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat Commun, 13(1), 1651.
[136] Rodriguez-Cobo, L., Lomer, M., Cobo, A., & Lopez-Higuera, J.-M. (2013). Optical fiber strain sensor with extended dynamic range based on specklegrams. Sensors and Actuators A: Physical, 203, 341-345.
[137] Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J.-M. (2015). Fiber Specklegram-Multiplexed Sensor. Journal of Lightwave Technology, 33(12), 2591-2597.
[138] Fujiwara, E., Marques Dos Santos, M. F., & Suzuki, C. K. (2017). Optical fiber specklegram sensor analysis by speckle pattern division. Appl Opt, 56(6), 1585-1590.
[139] Cuevas, A. R., Fontana, M., Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J. M. (2018). Machine Learning for Turning Optical Fiber Specklegram Sensor into a Spatially-Resolved Sensing System. Proof of Concept. Journal of Lightwave Technology, 36(17), 3733-3738.
[140] Leal-Junior, A. G., Frizera, A., Marques, C., & Pontes, M. J. (2020). Optical Fiber Specklegram Sensors for Mechanical Measurements: A Review. IEEE Sensors Journal, 20(2), 569-576.
[141] Tian, J., Zuo, Y., Hou, M., & Jiang, Y. (2021). Magnetic field measurement based on a fiber laser oscillation circuit merged with a polarization-maintaining fiber Sagnac interference structure. Opt Express, 29(6), 8763-8769.
[142] Wei, F., Liu, D., Mallik, A. K., Farrell, G., Wu, Q., Peng, G. D., & Semenova, Y. (2019). Temperature-compensated magnetic field sensing with a dual-ring structure consisting of microfiber coupler-Sagnac loop and fiber Bragg grating-assisted resonant cavity. Appl Opt, 58(9), 2334-2339.
[143] Yibin, L., Lin, W., Vai, M. I., Shum, P. P., Shao, L.-Y., He, W., Liu, S., Zhao, F., Wang, W., & Yuhui, L. (2022). Fiber Optic Electric Field Intensity Sensor Based on Liquid Crystal-Filled Photonic Crystal Fiber Incorporated Ring Laser. IEEE Photonics Journal, 14(1), 1-5.
[144] Tian, J., Yang, L., Qin, C., Wu, T., Wang, J., Zhang, Z., Li, K., & Copner, N. J. (2020). Refractive Index Sensing Based on Chaotic Correlation Fiber Loop Ring Down System Using Tapered Fiber. IEEE Sensors Journal, 20(8), 4215-4220.
[145] Cai, L., Zhao, Y., & Li, X.-g. (2017). A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter. Sensors and Actuators B: Chemical, 242, 673-678.
[146] Zhang, X., Liu, Z., Xie, L., & Peng, W. (2016). Refractive Index Sensor Based on Fiber Ring Laser. IEEE Photonics Technology Letters, 28(4), 524-527.
[147] Liu, Z. B., Tan, Z., Yin, B., Bai, Y., & Jian, S. (2014). Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser. Opt Express, 22(5), 5037-5042.
[148] Zhang, J., Zhang, H., Dai, W., & Yang, J. (2022). Highly discriminative simultaneous measurement of level, refractive index and temperature of liquid by dual-wavelength fiber ring-cavity laser sensor. Measurement, 204.
[149] Mansor, M., Abu Bakar, M. H., Omar, M. F., Mustapha Kamil, Y., Zainol Abidin, N. H., Mustafa, F. H., & Mahdi, M. A. (2020). Taper biosensor in fiber ring laser cavity for protein detection. Optics & Laser Technology, 125.
[150] Bai, X., Yuan, J., Gu, J., Wang, S., Zhao, Y., Pu, S., & Zeng, X. (2016). Magnetic Field Sensor Using Fiber Ring Cavity Laser Based on Magnetic Fluid. IEEE Photonics Technology Letters, 28(2), 115-118.
[151] Wang, Y., Chen, Z., Chen, W., & Zhang, X. (2021). Refractive index and temperature sensor based on fiber ring laser with tapered seven core fiber structure in 2 μm band. Optical Fiber Technology, 61.
[152] Wang, Z., Tan, Z., Xing, R., Liang, L., Qi, Y., & Jian, S. (2016). Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure. Optics & Laser Technology, 84, 59-63.
[153] Zou, H., Ma, L., Xiong, H., Zhang, Y., & Li, Y. T. (2018). Fiber ring laser sensor based on Fabry–Perot cavity interferometer for temperature sensing. Laser Physics, 28(1).
[154] Yang, X., Lu, Y., Liu, B., & Yao, J. (2017). Fiber Ring Laser Temperature Sensor Based on Liquid-Filled Photonic Crystal Fiber. IEEE Sensors Journal, 17(21), 6948-6952.
[155] Shi, J., Zhao, M., Li, X. G., Shi, B. Y., Wang, D., Wang, S. N., Li, X. Y., Bai, H., Niu, P. J., & Yao, J. Q. (2022). Temperature measurement with error suppression based on dual-wavelength fiber ring laser sensor. Optical Fiber Technology, 73.
[156] Jiang, B., Zhou, K., Wang, C., Sun, Q., Yin, G., Tai, Z., Wilson, K., Zhao, J., & Zhang, L. (2018). Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sensors and Actuators B: Chemical, 254, 1033-1039.
[157] Yan, Z., Mou, C., Zhou, K., Chen, X., & Zhang, L. (2011). UV-Inscription, Polarization-Dependant Loss Characteristics and Applications of 45° Tilted Fiber Gratings. Journal of Lightwave Technology, 29(18), 2715-2724.
[158] Jiang, B., Bi, Z., Hao, Z., Yuan, Q., Feng, D., Zhou, K., Zhang, L., Gan, X., & Zhao, J. (2019). Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring. Sensors and Actuators B: Chemical, 293, 336-341.
[159] Madry, M., Alwis, L., Binetti, L., Pajewski, L., & Beres-Pawlik, E. (2019). Simultaneous Measurement of Temperature and Relative Humidity Using a Dual-Wavelength Erbium-Doped Fiber Ring Laser Sensor. IEEE Sensors Journal, 19(20), 9215-9220.
[160] Liu, X., Zhang, X., Yang, J., & Du, X. (2019). Dual-ring dual-wavelength fiber laser sensor for simultaneous measurement of refractive index and ambient temperature with improved discrimination and detection limit. Appl Opt, 58(27), 7582-7587.
[161] Shi, J., Yang, F., Xu, W., Xu, D., Bai, H., Guo, C., Wu, Y., Zhang, S., Liu, T., & Yao, J. (2020). High-Resolution Temperature Sensor Based on Intracavity Sensing of Fiber Ring Laser. Journal of Lightwave Technology, 38(7), 2010-2014.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/583042
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Lin WH. Research on Temperature Sensing Characteristics of Micro-Nano Fiber Interferometer Based on Different Configurations in Fiber Laser[D]. 澳门. 澳门大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11953003-林伟浩-电子与电气工程(16278KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林伟浩]的文章
百度学术
百度学术中相似的文章
[林伟浩]的文章
必应学术
必应学术中相似的文章
[林伟浩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。