[1] Su, H. L., Wang, Y. X., Guan, C. S., Yu, S., Yu, X. Y., & Yang, W. L. (2022). PDMS-sensitized MZI fiber optic temperature sensor based on TCF-NCF-TCF structure. Optical Fiber Technology, 73.
[2] Liu, Y. X., Zhang, Y. N., Han, B., Zhao, J. C., Li, X. G., & Zhao, Y. (2023). Sensing characteristics of a compact gourd-type MZ interferometer based on hollow-core fiber. Optics and Lasers in Engineering, 164.
[3] Wu, D., Zhu, T., Chiang, K. S., & Deng, M. (2012). All Single-Mode Fiber Mach-Zehnder Interferometer Based on Two Peanut-Shape Structures. Journal of Lightwave Technology, 30(5), 805-810.
[4] Hua, P., Jonathan Luff, B., Quigley, G. R., Wilkinson, J. S., & Kawaguchi, K. (2002). Integrated optical dual Mach–Zehnder interferometer sensor. Sensors and Actuators B: Chemical, 87(2), 250-257.
[5] Li, Y., Chen, L. A., Harris, E., & Bao, X. Y. (2010). Double-Pass In-Line Fiber Taper Mach-Zehnder Interferometer Sensor. Ieee Photonics Technology Letters, 22(23), 1750-1752.
[6] Zhu, T., Wu, D., Liu, M., & Duan, D. W. (2012). In-line fiber optic interferometric sensors in single-mode fibers. Sensors (Basel), 12(8), 10430-10449.
[7] Wu, D., Zhu, T., & Liu, M. (2012). A high temperature sensor based on a peanut-shape structure Michelson interferometer. Optics Communications, 285(24), 5085-5088.
[8] Zhao, Y. J., Zhou, A., Guo, H. Y., Zheng, Z., Xu, Y. M., Zhou, C. M., & Yuan, L. B. (2018). An Integrated Fiber Michelson Interferometer Based on Twin-Core and Side-Hole Fibers for Multiparameter Sensing. Journal of Lightwave Technology, 36(4), 993-997.
[9] Li, L. J., Ma, Q., Cao, M. Y., Zhang, G. N., Zhang, Y., Jiang, L., Gao, C. T., Yao, J., Gong, S. S., & Li, W. X. (2016). High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror. Sensors and Actuators B-Chemical, 234, 674-679.
[10] Zhao, Y., Dai, M., Chen, Z., Liu, X., Gandhi, M. S. A., Li, Q., & Fu, H. Y. (2021). Ultrasensitive temperature sensor with Vernier-effect improved fiber Michelson interferometer. Opt Express, 29(2), 1090-1101.
[11] Lee, C. E., & Taylor, H. F. (1991). Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source. Journal of Lightwave Technology, 9(1), 129-134.
[12] Favero, F. C., Araujo, L., Bouwmans, G., Finazzi, V., Villatoro, J., & Pruneri, V. (2012). Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing. Opt Express, 20(7), 7112-7118.
[13] Nguyen, L. V., Vasiliev, M., & Alameh, K. (2011). Three-Wave Fiber Fabry–Pérot Interferometer for Simultaneous Measurement of Temperature and Water Salinity of Seawater. IEEE Photonics Technology Letters, 23(7), 450-452.
[14] Yang, Y., Wang, Y., Zhao, Y., Jiang, J., He, X., Yang, W., Zhu, Z., Gao, W., & Li, L. (2017). Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity. Optics Express, 25(26).
[15] Zhang, Z., He, J., Du, B., Zhang, F., Guo, K., & Wang, Y. (2018). Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers. Opt Lett, 43(24), 6009-6012.
[16] Shao, L.-Y., Luo, Y., Zhang, Z., Zou, X., Luo, B., Pan, W., & Yan, L. (2015). Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect. Optics Communications, 336, 73-76.
[17] Frazao, O., Silva, S. O., Baptista, J. M., Santos, J. L., Statkiewicz-Barabach, G., Urbanczyk, W., & Wojcik, J. (2008). Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber. Appl Opt, 47(27), 4841-4848.
[18] Cui, Y., Shum, P. P., Hu, D. J. J., Wang, G., Humbert, G., & Dinh, X.-Q. (2012). Temperature Sensor by Using Selectively Filled Photonic Crystal Fiber Sagnac Interferometer. IEEE Photonics Journal, 4(5), 1801-1808.
[19] Liu, Q., Li, S.-G., & Chen, H. (2018). Enhanced sensitivity of temperature sensor by a PCF with a defect core based on Sagnac interferometer. Sensors and Actuators B: Chemical, 254, 636-641.
[20] Yang, X., Zhao, C.-L., Peng, Q., Zhou, X., & Lu, C. (2005). FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter. Optics Communications, 250(1-3), 63-68.
[21] Wang, H., Li, C., Liang, L., Jiang, K., Dai, S., Wu, H., & Tong, X. (2023). Fast response characteristics of fiber Bragg grating temperature sensors and explosion temperature measurement tests. Sensors and Actuators A: Physical, 354.
[22] Buchfellner, F., Stadler, A., Bian, Q., Hennesen, M., Zeisberger, A., Koch, A. W., & Roths, J. (2022). Generalized and wavelength-dependent temperature calibration function for multipoint regenerated fiber Bragg grating sensors. Opt Express, 30(25), 44769-44784.
[23] Liu, Y., Xie, S., Zheng, Y., & Yang, X. (2022). Simultaneous measurement of refractive index and temperature based on tapered no-core fiber cascaded with a fiber Bragg grating. Results in Optics, 9.
[24] Chen, S., Vilchis-Rodriguez, D., Djurovic, S., Barnes, M., McKeever, P., & Jia, C. (2022). FBG Head Size Influence on Localized On-Chip Thermal Measurement in IGBT Power Modules. IEEE Sensors Journal, 22(22), 21684-21693.
[25] Li, X., Zhang, H., Chen, N., Wang, Y., Gao, X., & Zhou, X. (2022). Simultaneous Detection of Magnetic Field and Temperature Using Micro-Nanofiber Cascaded Fiber Bragg Grating Structure. IEEE Sensors Journal, 22(20), 19267-19272.
[26] Jiang, L., Yang, J., Wang, S., Li, B., & Wang, M. (2011). Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Optics Letters, 36(19).
[27] Yao, Q., Meng, H., Wang, W., Xue, H., Xiong, R., Huang, B., Tan, C., & Huang, X. (2014). Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating. Sensors and Actuators A: Physical, 209, 73-77.
[28] Wang, Y., Li, Y., Liao, C., Wang, D. N., Yang, M., & Lu, P. (2010). High-Temperature Sensing Using Miniaturized Fiber In-Line Mach–Zehnder Interferometer. IEEE Photonics Technology Letters, 22(1), 39-41.
[29] Woong-Gyu, J., Sang-Woo, K., Kwang-Taek, K., Eung-Soo, K., & Shin-Won, K. (2001). High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide. IEEE Photonics Technology Letters, 13(11), 1209-1211.
[30] Gaston, A., Lozano, I., Perez, F., Auza, F., & Sevilla, J. (2003). Evanescent wave optical-fiber sensing (temperature, relative humidity, and ph sensors). IEEE Sensors Journal, 3(6), 806-811.
[31] Dikovska, A. O., Atanasova, G. B., Nedyalkov, N. N., Stefanov, P. K., Atanasov, P. A., Karakoleva, E. I., & Andreev, A. T. (2010). Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber. Sensors and Actuators B: Chemical, 146(1), 331-336.
[32] Weng, S., Pei, L., Liu, C., Wang, J., Li, J., & Ning, T. (2016). Double-Side Polished Fiber SPR Sensor for Simultaneous Temperature and Refractive Index Measurement. IEEE Photonics Technology Letters, 28(18), 1916-1919.
[33] Datta, P., Matías, I., Aramburu, C., Bakas, A., López-Amo, M., & Otón, J. M. (1996). Tapered optical-fiber temperature sensor. Microwave and Optical Technology Letters, 11(2), 93-95.
[34] Sun, Q., Luo, H., Luo, H., Lai, M., Liu, D., & Zhang, L. (2015). Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection. Opt Express, 23(10), 12777-12783.
[35] Wu, Q., Qu, Y., Liu, J., Yuan, J., Wan, S.-P., Wu, T., He, X.-D., Liu, B., Liu, D., Ma, Y., Semenova, Y., Wang, P., Xin, X., & Farrell, G. (2021). Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sensors Journal, 21(11), 12734-12751.
[36] Soltanian, M. R. K., Sharbirin, A. S., Ariannejad, M. M., Amiri, I. S., De La Rue, R. M., Brambilla, G., Rahman, B. M. A., Grattan, K. T. V., & Ahmad, H. (2016). Variable Waist-Diameter Mach–Zehnder Tapered-Fiber Interferometer as Humidity and Temperature Sensor. IEEE Sensors Journal, 16(15), 5987-5992.
[37] Zhao, L., Jiang, L., Wang, S., Xiao, H., Lu, Y., & Tsai, H. L. (2011). A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing. Sensors (Basel), 11(1), 54-61.
[38] Liao, C. R., Chen, H. F., & Wang, D. N. (2014). Ultracompact Optical Fiber Sensor for Refractive Index and High-Temperature Measurement. Journal of Lightwave Technology, 32(14), 2531-2535.
[39] Poeggel, S., Duraibabu, D., Kalli, K., Leen, G., Dooly, G., Lewis, E., Kelly, J., & Munroe, M. (2015). Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors. Biosensors (Basel), 5(3), 432-449.
[40] Kaur, A., Watkins, S. E., Huang, J., Yuan, L., & Xiao, H. (2014). Microcavity strain sensor for high temperature applications. Optical Engineering, 53(1).
[41] Wang, J., Li, Z., Fu, X., Gui, X., Zhan, J., Wang, H., & Jiang, D. (2020). High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulsewidth. Opt Express, 28(11), 16045-16056.
[42] Yan, H., Li, P., Zhang, H., Shen, X., & Wang, Y. (2017). A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice. Photonic Sensors, 7(4), 372-376.
[43] Chou, Y.-L., Wu, C.-W., Jhang, R.-T., & Chiang, C.-C. (2019). A novel optical fiber temperature sensor with polymer-metal alternating structure. Optics & Laser Technology, 115, 186-192.
[44] Li, J., Nie, Q., Gai, L., Li, H., & Hu, H. (2017). Highly Sensitive Temperature Sensing Probe Based on Deviation S-Shaped Microfiber. Journal of Lightwave Technology, 35(17), 3699-3704.
[45] Wang, T., Liu, B., Zhao, L., Wu, Y., Han, Y., Nan, T., Wang, J., Zheng, J., & Zhang, Y. (2021). Enhanced refractive index and temperature sensor based on balloon-shaped Mach-Zehnder interferometer. Optical Fiber Technology, 65.
[46] Wang, Y., Huang, Q., Zhu, W., Yang, M., & Lewis, E. (2018). Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt Express, 26(2), 1910-1917.
[47] Wang, J.-K., Ying, Y., Gao, Z.-J., Cheng, S.-Y., & Si, G.-Y. (2021). Surface plasmon resonance (SPR) based temperature and magnetic field sensor in a dual-core D-shaped photonic crystal fiber (PCF). Instrumentation Science & Technology, 50(3), 271-287.
[48] Xin, Y., Zhao, M., Zhao, H., Gong, H., Shen, C., Zhao, C.-L., & Dong, X. (2018). Alcohol-filled side-hole fiber based Mach-Zehnder interferometer for temperature measurement. Optical Fiber Technology, 46, 72-76.
[49] Xin, Y., Dong, X., Meng, Q., Qi, F., & Zhao, C.-L. (2013). Alcohol-filled side-hole fiber Sagnac interferometer for temperature measurement. Sensors and Actuators A: Physical, 193, 182-185
[50] Yu, Z., Lang, T., Hu, J., Chen, M., Ding, K., & Shao, L. Y. (2021). High sensitivity temperature sensor based on a side-hole fiber. Appl Opt, 60(12), 3474-3481.
[51] Liu, Y.-g., Liu, X., Zhang, T., & Zhang, W. (2018). Integrated FPI-FBG composite all-fiber sensor for simultaneous measurement of liquid refractive index and temperature. Optics and Lasers in Engineering, 111, 167-171.
[52] Su, H., Zhao, C., Song, X., Kong, F., Zhang, Z., & Liu, C. (2021). High-sensitivity optical fiber temperature sensor with cascaded configuration of MZI and FPI based on Vernier effect. Optical Fiber Technology, 67.
[53] Liu, Y., Zhang, T., Wang, Y., Yang, D., Liu, X., Fu, H., & Jia, Z. (2018). Simultaneous measurement of gas pressure and temperature with integrated optical fiber FPI sensor based on in-fiber micro-cavity and fiber-tip. Optical Fiber Technology, 46, 77-82.
[54] Bae, H., Yun, D., Liu, H., Olson, D. A., & Yu, M. (2014). Hybrid Miniature Fabry–Perot Sensor with Dual Optical Cavities for Simultaneous Pressure and Temperature Measurements. Journal of Lightwave Technology, 32(8), 1585-1593.
[55] Choi, H. Y., Mudhana, G., Park, K. S., Paek, U. C., & Lee, B. H. (2010). Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt Express, 18(1), 141-149.
[56] Choi, H. Y., Park, K. S., Park, S. J., Paek, U. C., Lee, B. H., & Choi, E. S. (2008). Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt Lett, 33(21), 2455-2457.
[57] Zhao, X., Wu, X., Zuo, C., Mu, S., Zhang, W., Shi, J., Gui, L., Guang, D., & Yu, B. (2022). Miniatured Fabry-Perot strain probe based on anti-resonant hollow core fiber. Measurement, 203.
[58] Kangpeng, Z., Wei, H., Wen, Z., Mingli, D., & Lianqing, Z. (2019). A Dual-parameter Fabry–Perot Interferometer Sensor Based on Single Mode-Photonic Crystal-Multimode Fiber Structure. Instruments and Experimental Techniques, 62(3), 426-431.
[59] Abbas, L. G., & Li, H. (2021). Temperature sensing by hybrid interferometer based on Vernier like effect. Optical Fiber Technology, 64.
[60] Abbas, L. G., Mumtaz, F., Parveen, R., Dai, Y., & Ashraf, M. A. (2022). An efficacious hybrid interferometer based on a Vernier-like effect for dual parameter sensing. Optik, 264.
[61] Wu, S., Yan, G., Lian, Z., Chen, X., Zhou, B., & He, S. (2016). An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature. Sensors and Actuators B: Chemical, 225, 50-56.
[62] Abbas, L. G., Ai, Z., Mumtaz, F., Muhammad, A., Dai, Y., & Parveen, R. (2021). Temperature and Strain Sensing With Hybrid Interferometer. IEEE Sensors Journal, 21(23), 26785-26792.
[63] Lu, Y., Han, M., & Tian, J. (2014). Fiber-Optic Temperature Sensor Using a Fabry–Pérot Cavity Filled With Gas of Variable Pressure. IEEE Photonics Technology Letters, 26(8), 757-760.
[64] Chen, M.-q., Zhao, Y., Xia, F., Peng, Y., & Tong, R.-j. (2018). High sensitivity temperature sensor based on fiber air-microbubble Fabry-Perot interferometer with PDMS-filled hollow-core fiber. Sensors and Actuators A: Physical, 275, 60-66.
[65] He, C., Zhou, C., Zhou, Q., Xie, S., Xiao, M., Tian, J., & Yao, Y. (2021). Simultaneous measurement of strain and temperature using Fabry–Pérot interferometry and antiresonant mechanism in a hollow-core fiber. Chinese Optics Letters, 19(4).
[66] Liao, Y., Liu, Y., Li, Y., Lang, C., Cao, K., & Qu, S. (2019). Large-Range, Highly-Sensitive, and Fast-Responsive Optical Fiber Temperature Sensor Based on the Sealed Ethanol in Liquid State Up to its Supercritical Temperature. IEEE Photonics Journal, 11(6), 1-12.
[67] Tian, J., Lu, Z., Quan, M., Jiao, Y., & Yao, Y. (2016). Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber. Opt Express, 24(18), 20132-20142.
[68] Wu, N., Xia, M., Wu, Y., Li, S., Qi, R., Huang, Y., & Xia, L. (2021). Microwave photonics interrogation for multiplexing fiber Fabry-Perot sensors. Opt Express, 29(11), 16652-16664.
[69] Yu, Y., Chen, X., Huang, Q., Du, C., Ruan, S., & Wei, H. (2015). Enhancing the pressure sensitivity of a Fabry–Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel. Applied Physics B, 120(3), 461-467.
[70] Zhang, G., Zhang, W., Gui, L., Li, S., Fang, S., Zuo, C., Wu, X., & Yu, B. (2020). Ultra-sensitive high temperature sensor based on a PMPCF tip cascaded with an ECPMF Sagnac loop. Sensors and Actuators A: Physical, 314.
[71] Tan, X., Geng, Y., Li, X., Gao, R., & Yin, Z. (2013). High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer. Appl Opt, 52(34), 8195-8198.
[72] Chen, L., Tian, J., Wu, Q., & Yao, Y. (2023). Ultrahigh Sensitivity Temperature Sensor Based on Harmonic Vernier Effect. IEEE Sensors Journal, 23(1), 381-388.
[73] Hu, Y., Wei, H., Ma, Z., Zhang, L., Pang, F., & Wang, T. (2022). Microbubble-based optical fiber Fabry-Perot sensor for simultaneous high-pressure and high-temperature sensing. Opt Express, 30(19), 33639-33651.
[74] Ferreira, M. S., Bierlich, J., Kobelke, J., Pinto, J. L., & Wondraczek, K. (2021). Negative curvature hollow core fiber sensor for the measurement of strain and temperature. Opt Express, 29(4), 5808-5818.
[75] Zheng, W., Xie, J., Li, Y., Xu, B., Kang, J., Shen, C., Wang, J., Jin, Y., Liu, H., Ni, K., Dong, X., Zhao, C., & Jin, S. (2014). A fiber air-gap Fabry–Pérot temperature sensor demodulated by using frequency modulated continuous wave. Optics Communications, 324, 234-237.
[76] Zhang, C., Cui, G., Miao, C., Zhang, S., Li, H., Zhao, J., & Wu, J. (2021). A Fabry-Perot temperature sensor sealed with thermo-sensitive polymer. Results in Optics, 5.
[77] Xu, B., Li, P., Wang, D. N., Zhao, C.-L., Dai, J., & Yang, M. (2017). Hydrogen sensor based on polymer-filled hollow core fiber with Pt-loaded WO3/SiO2 coating. Sensors and Actuators B: Chemical, 245, 516-523.
[78] Gao, H., Xu, D., Ye, Y., Zhang, Y., Shen, J., & Li, C. (2022). Fiber-tip polymer filled probe for high-sensitivity temperature sensing and polymer refractometers. Opt Express, 30(5), 8104-8114.
[79] Pawar, D., Kumar, A., Kanawade, R., Mondal, S., & Sinha, R. K. (2019). Negative axicon tip micro-cavity with a polymer incorporated optical fiber temperature sensor. OSA Continuum, 2(8).
[80] Tan, X., Li, X., Geng, Y., Yin, Z., Wang, L., Wang, W., & Deng, Y. (2015). Polymer Microbubble-Based Fabry–Perot Fiber Interferometer and Sensing Applications. IEEE Photonics Technology Letters, 27(19), 2035-2038.
[81] Wu, D., Zhao, Y., & Hu, H. (2014). Experimental research on FLM temperature sensor with an ethanol-filled photonic crystal fiber. Sensors and Actuators A: Physical, 209, 62-67.
[82] Lv, R., Zhao, Y., & Wang, Q. (2014). An Optical Fiber Temperature Sensor Based on an Ethanol Filled Fabry-Perot Cavity. Instrumentation Science & Technology, 42(4), 402-411.
[83] Feng, M., Wang, S., Wang, S., & Mao, L. (2019). A miniature inline fiber temperature sensor based on a silica capillary partially filled with ethanol. Optik, 193.
[84] Duong, H. D., & Rhee, J. I. (2008). Enhancement of the sensitivity of a quantum dot-based fiber optic temperature sensor using the sol–gel technique. Sensors and Actuators B: Chemical, 134(2), 423-426.
[85] Zhang, G., Yu, B., Cao, Z., Lu, L., Xu, F., Zhuang, Z., & Wang, Y. (2020). A Low Loss Quantum-Dot-Doped Optical Fiber Temperature Sensor Based on Flexible Print Technology. IEEE Photonics Journal, 12(3), 1-8.
[86] Wang, W., Yin, X., Wu, J., Yu, Y., Geng, Y., Tan, X., Du, Y., Hong, X., & Li, X. (2016). Quantum Dots-Based Multiplexed Fiber-Optic Temperature Sensors. IEEE Sensors Journal, 16(8), 2437-2441.
[87] Yin, X., & Li, X. (2014). Temperature Sensor Based on Quantum Dots Solution Encapsulated in Photonic Crystal Fiber. IEEE Sensors Journal, 1-1.
[88] Du, C., Wang, Q., & Zhao, Y. (2018). Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers. Sensors and Actuators A: Physical, 278, 78-84.
[89] Di, C., & Chen, H. (2022). Highly sensitive temperature sensor based on a liquid crystal selectively infiltrated two-core photonic crystal fiber. Optik, 268.
[90] Ma, M., Chen, H., Li, S., Jing, X., Zhang, W., Liu, Y., & Zhu, E. (2019). Highly sensitive temperature sensor based on Sagnac interferometer with liquid crystal photonic crystal fibers. Optik, 179, 665-671.
[91] Wang, E., Cheng, P., Li, J., Cheng, Q., Zhou, X., & Jiang, H. (2020). High-sensitivity temperature and magnetic sensor based on magnetic fluid and liquid ethanol filled micro-structured optical fiber. Optical Fiber Technology, 55.
[92] Li, C., Ning, T., Wen, X., Li, J., Zhang, C., & Zhang, C. (2015). Magnetic field and temperature sensor based on a no-core fiber combined with a fiber Bragg grating. Optics & Laser Technology, 72, 104-107.
[93] Li, B., Zhang, F., Yan, X., Zhang, X., Wang, F., & Cheng, T. (2022). An Optical Fiber-Based Surface Plasmon Resonance Sensor for Simultaneous Measurement of Temperature and Magnetic Field Intensity. IEEE Transactions on Instrumentation and Measurement, 71, 1-7.
[94] Velázquez-González, J. S., Monzón-Hernández, D., Moreno-Hernández, D., Martínez-Piñón, F., & Hernández-Romano, I. (2017). Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor. Sensors and Actuators B: Chemical, 242, 912-920.
[95] Zhu, Z., Liu, L., Liu, Z., Zhang, Y., & Zhang, Y. (2017). Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt Lett, 42(15), 2948-2951.
[96] Jorgenson, R. C., & Yee, S. S. (1993). A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 12(3), 213-220.
[97] Xuewen, S., Lin, Z., & Bennion, I. (2002). Sensitivity characteristics of long-period fiber gratings. Journal of Lightwave Technology, 20(2), 255-266.
[98] Albert, J., Shao, L.-Y., & Caucheteur, C. (2013). Tilted fiber Bragg grating sensors. Laser & Photonics Reviews, 7(1), 83-108.
[99] Leung, A., Shankar, P. M., & Mutharasan, R. (2007). A review of fiber-optic biosensors. Sensors and Actuators B: Chemical, 125(2), 688-703.
[100] Kirkendall, C. K., & Dandridge, A. (2004). Overview of high performance fibre-optic sensing. Journal of Physics D: Applied Physics, 37(18), R197-R216.
[101] Wu, D. K., Kuhlmey, B. T., & Eggleton, B. J. (2009). Ultrasensitive photonic crystal fiber refractive index sensor. Opt Lett, 34(3), 322-324.
[102] Tian, Z., Yam, S. S. H., Barnes, J., Bock, W., Greig, P., Fraser, J. M., Loock, H.-P., & Oleschuk, R. D. (2008). Refractive Index Sensing With Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers. IEEE Photonics Technology Letters, 20(8), 626-628.
[103] Bai-Ou, G., Hwa-Yaw, T., Sien-Ting, L., & Chan, H. L. W. (2005). Ultrasonic hydrophone based on distributed Bragg reflector fiber laser. IEEE Photonics Technology Letters, 17(1), 169-171.
[104] Liu, W., Guo, T., Wong, A. C., Tam, H. Y., & He, S. (2010). Highly sensitive bending sensor based on Er3+-doped DBR fiber laser. Opt Express, 18(17), 17834-17840.
[105] Wo, J., Jiang, M., Malnou, M., Sun, Q., Zhang, J., Shum, P. P., & Liu, D. (2012). Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser. Opt Express, 20(3), 2844-2850.
[106] Shao, L.-Y., Lau, S.-T., Dong, X., Zhang, A. P., Chan, H. L. W., Tam, H. Y., & He, S. (2008). High-Frequency Ultrasonic Hydrophone Based on a Cladding-Etched DBR Fiber Laser. IEEE Photonics Technology Letters, 20(8), 548-550.
[107] Zhao, Y., Chang, J., Wang, Q., Ni, J., Song, Z., Qi, H., Wang, C., Wang, P., Gao, L., Sun, Z., Lv, G., Liu, T., & Peng, G. (2013). Research on a novel composite structure Er(3)(+)-doped DBR fiber laser with a pi-phase shifted FBG. Opt Express, 21(19), 22515-22522.
[108] Hadeler, O., Ronnekleiv, E., Ibsen, M., & Laming, R. I. (1999). Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements. Appl Opt, 38(10), 1953-1958.
[109] Cranch, G. A., Flockhart, G. M. H., & Kirkendall, C. K. (2008). Distributed Feedback Fiber Laser Strain Sensors. IEEE Sensors Journal, 8(7), 1161-1172.
[110] Wu, H., Dong, L., Zheng, H., Liu, X., Yin, X., Ma, W., Zhang, L., Yin, W., Jia, S., & Tittel, F. K. (2015). Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser. Sensors and Actuators B: Chemical, 221, 666-672.
[111] Løvseth, S. W., Kringlebotn, J. T., Rønnekleiv, E., & Bløtekjær, K. (1999). Fiber distributed-feedback lasers used as acoustic sensors in air. Applied Optics, 38(22).
[112] Muanenda, Y., Oton, C. J., Faralli, S., & Di Pasquale, F. (2016). A Cost-Effective Distributed Acoustic Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection Phase-OTDR. IEEE Photonics Journal, 8(1), 1-10.
[113] Frank, A., Bohnert, K., Haroud, K., Brandle, H., Poulsen, C. V., Pedersen, J. E., & Patscheider, J. (2003). Distributed feedback fiber laser sensor for hydrostatic pressure. IEEE Photonics Technology Letters, 15(12), 1758-1760.
[114] Talaverano, L., Abad, S., Jarabo, S., & Lopez-Amo, M. (2001). Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability. Journal of Lightwave Technology, 19(4), 553-558.
[115] Youlong, Y., Luenfu, L., Hwayaw, T., & Wenghong, C. (2001). Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system. IEEE Photonics Technology Letters, 13(7), 702-704.
[116] Shi, J., Wang, Y., Xu, D., Zhang, H., Su, G., Duan, L., Yan, C., Yan, D., Fu, S., & Yao, J. (2016). Temperature Sensor Based on Fiber Ring Laser With Sagnac Loop. IEEE Photonics Technology Letters, 28(7), 794-797.
[117] Qingqiang, M., Xinyong, D., Kai, N., Yi, L., Ben, X., & Zhemin, C. (2014). Optical Fiber Laser Salinity Sensor Based on Multimode Interference Effect. IEEE Sensors Journal, 14(6), 1813-1816.
[118] Zuowei, Y., Liang, G., Shengchun, L., Liang, Z., Feixiang, W., Lin, C., & Xiangfei, C. (2010). Fiber Ring Laser Sensor for Temperature Measurement. Journal of Lightwave Technology.
[119] Xiao, S., Zhang, L., Wei, D., Liu, F., Zhang, Y., & Xiao, M. (2018). Orbital angular momentum-enhanced measurement of rotation vibration using a Sagnac interferometer. Opt Express, 26(2), 1997-2005.
[120] Ma, L., Chen, C., Zhou, L., Jiang, S., & Zhang, H. (2019). Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity. Applied Physics Letters, 114(8).
[121] Pang, F., Zheng, H., Liu, H., Yang, J., Chen, N., Shang, Y., Ramachandran, S., & Wang, T. (2019). The Orbital Angular Momentum Fiber Modes for Magnetic Field Sensing. IEEE Photonics Technology Letters, 31(11), 893-896.
[122] Fu, H., Wang, S., Chang, H., & You, Y. (2020). A high resolution and large range fiber Bragg grating temperature sensor with vortex beams. Optical Fiber Technology, 60.
[123] Liu, E., Yan, B., Zhou, H., Liu, Y., Liu, G., & Liu, J. (2021). OAM mode-excited surface plasmon resonance for refractive index sensing based on a photonic quasi-crystal fiber. Journal of the Optical Society of America B, 38(12).
[124] Kamruzzaman, M. M., Mhatli, S., Arun Kumar, U., Roopa Jayasingh, J., & Sivasakthiselvan, S. (2022). Design of circular photonic crystal fiber for OAM extraction SDM applications. Optical and Quantum Electronics, 54(12).
[125] Taimre, T., Nikolić, M., Bertling, K., Lim, Y. L., Bosch, T., & Rakić, A. D. (2015). Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Advances in Optics and Photonics, 7(3).
[126] Yu, Y., Giuliani, G., & Donati, S. (2004). Measurement of the Linewidth Enhancement Factor of Semiconductor Lasers Based on the Optical Feedback Self-Mixing Effect. IEEE Photonics Technology Letters, 16(4), 990-992.
[127] Bosch, T. (2001). Optical feedback interferometry for sensing application. Optical Engineering, 40(1).
[128] Bes, C., Plantier, G., & Bosch, T. (2006). Displacement Measurements Using a Self-Mixing Laser Diode Under Moderate Feedback. IEEE Transactions on Instrumentation and Measurement, 55(4), 1101-1105.
[129] Scalise, L., Yu, Y., Giuliani, G., Plantier, G., & Bosch, T. (2004). Self-Mixing Laser Diode Velocimetry: Application to Vibration and Velocity Measurement. IEEE Transactions on Instrumentation and Measurement, 53(1), 223-232.
[130] Fan, Y., Yu, Y., Xi, J., & Chicharo, J. F. (2011). Improving the measurement performance for a self-mixing interferometry-based displacement sensing system. Appl Opt, 50(26), 5064-5072.
[131] Wang, R., Zhang, H., Liu, Q., Liu, F., Han, X., Liu, X., Li, K., Xiao, G., Albert, J., Lu, X., & Guo, T. (2022). Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat Commun, 13(1), 547.
[132] Albero Blanquer, L., Marchini, F., Seitz, J. R., Daher, N., Betermier, F., Huang, J., Gervillie, C., & Tarascon, J. M. (2022). Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat Commun, 13(1), 1153.
[133] Liu, Y., Liu, Z., Mei, W., Han, X., Liu, P., Wang, C., Xia, X., Li, K., Wang, S., Wang, Q., & Guo, T. (2022). Operando monitoring Lithium-ion battery temperature via implanting femtosecond-laser-inscribed optical fiber sensors. Measurement, 203.
[134] Xi, J., Li, J., Sun, H., Ma, T., Deng, L., Liu, N., Huang, X., & Zhang, J. (2022). In-situ monitoring of internal temperature and strain of solid-state battery based on optical fiber sensors. Sensors and Actuators A: Physical, 347.
[135] Miele, E., Dose, W. M., Manyakin, I., Frosz, M. H., Ruff, Z., De Volder, M. F. L., Grey, C. P., Baumberg, J. J., & Euser, T. G. (2022). Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat Commun, 13(1), 1651.
[136] Rodriguez-Cobo, L., Lomer, M., Cobo, A., & Lopez-Higuera, J.-M. (2013). Optical fiber strain sensor with extended dynamic range based on specklegrams. Sensors and Actuators A: Physical, 203, 341-345.
[137] Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J.-M. (2015). Fiber Specklegram-Multiplexed Sensor. Journal of Lightwave Technology, 33(12), 2591-2597.
[138] Fujiwara, E., Marques Dos Santos, M. F., & Suzuki, C. K. (2017). Optical fiber specklegram sensor analysis by speckle pattern division. Appl Opt, 56(6), 1585-1590.
[139] Cuevas, A. R., Fontana, M., Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J. M. (2018). Machine Learning for Turning Optical Fiber Specklegram Sensor into a Spatially-Resolved Sensing System. Proof of Concept. Journal of Lightwave Technology, 36(17), 3733-3738.
[140] Leal-Junior, A. G., Frizera, A., Marques, C., & Pontes, M. J. (2020). Optical Fiber Specklegram Sensors for Mechanical Measurements: A Review. IEEE Sensors Journal, 20(2), 569-576.
[141] Tian, J., Zuo, Y., Hou, M., & Jiang, Y. (2021). Magnetic field measurement based on a fiber laser oscillation circuit merged with a polarization-maintaining fiber Sagnac interference structure. Opt Express, 29(6), 8763-8769.
[142] Wei, F., Liu, D., Mallik, A. K., Farrell, G., Wu, Q., Peng, G. D., & Semenova, Y. (2019). Temperature-compensated magnetic field sensing with a dual-ring structure consisting of microfiber coupler-Sagnac loop and fiber Bragg grating-assisted resonant cavity. Appl Opt, 58(9), 2334-2339.
[143] Yibin, L., Lin, W., Vai, M. I., Shum, P. P., Shao, L.-Y., He, W., Liu, S., Zhao, F., Wang, W., & Yuhui, L. (2022). Fiber Optic Electric Field Intensity Sensor Based on Liquid Crystal-Filled Photonic Crystal Fiber Incorporated Ring Laser. IEEE Photonics Journal, 14(1), 1-5.
[144] Tian, J., Yang, L., Qin, C., Wu, T., Wang, J., Zhang, Z., Li, K., & Copner, N. J. (2020). Refractive Index Sensing Based on Chaotic Correlation Fiber Loop Ring Down System Using Tapered Fiber. IEEE Sensors Journal, 20(8), 4215-4220.
[145] Cai, L., Zhao, Y., & Li, X.-g. (2017). A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter. Sensors and Actuators B: Chemical, 242, 673-678.
[146] Zhang, X., Liu, Z., Xie, L., & Peng, W. (2016). Refractive Index Sensor Based on Fiber Ring Laser. IEEE Photonics Technology Letters, 28(4), 524-527.
[147] Liu, Z. B., Tan, Z., Yin, B., Bai, Y., & Jian, S. (2014). Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser. Opt Express, 22(5), 5037-5042.
[148] Zhang, J., Zhang, H., Dai, W., & Yang, J. (2022). Highly discriminative simultaneous measurement of level, refractive index and temperature of liquid by dual-wavelength fiber ring-cavity laser sensor. Measurement, 204.
[149] Mansor, M., Abu Bakar, M. H., Omar, M. F., Mustapha Kamil, Y., Zainol Abidin, N. H., Mustafa, F. H., & Mahdi, M. A. (2020). Taper biosensor in fiber ring laser cavity for protein detection. Optics & Laser Technology, 125.
[150] Bai, X., Yuan, J., Gu, J., Wang, S., Zhao, Y., Pu, S., & Zeng, X. (2016). Magnetic Field Sensor Using Fiber Ring Cavity Laser Based on Magnetic Fluid. IEEE Photonics Technology Letters, 28(2), 115-118.
[151] Wang, Y., Chen, Z., Chen, W., & Zhang, X. (2021). Refractive index and temperature sensor based on fiber ring laser with tapered seven core fiber structure in 2 μm band. Optical Fiber Technology, 61.
[152] Wang, Z., Tan, Z., Xing, R., Liang, L., Qi, Y., & Jian, S. (2016). Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure. Optics & Laser Technology, 84, 59-63.
[153] Zou, H., Ma, L., Xiong, H., Zhang, Y., & Li, Y. T. (2018). Fiber ring laser sensor based on Fabry–Perot cavity interferometer for temperature sensing. Laser Physics, 28(1).
[154] Yang, X., Lu, Y., Liu, B., & Yao, J. (2017). Fiber Ring Laser Temperature Sensor Based on Liquid-Filled Photonic Crystal Fiber. IEEE Sensors Journal, 17(21), 6948-6952.
[155] Shi, J., Zhao, M., Li, X. G., Shi, B. Y., Wang, D., Wang, S. N., Li, X. Y., Bai, H., Niu, P. J., & Yao, J. Q. (2022). Temperature measurement with error suppression based on dual-wavelength fiber ring laser sensor. Optical Fiber Technology, 73.
[156] Jiang, B., Zhou, K., Wang, C., Sun, Q., Yin, G., Tai, Z., Wilson, K., Zhao, J., & Zhang, L. (2018). Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sensors and Actuators B: Chemical, 254, 1033-1039.
[157] Yan, Z., Mou, C., Zhou, K., Chen, X., & Zhang, L. (2011). UV-Inscription, Polarization-Dependant Loss Characteristics and Applications of 45° Tilted Fiber Gratings. Journal of Lightwave Technology, 29(18), 2715-2724.
[158] Jiang, B., Bi, Z., Hao, Z., Yuan, Q., Feng, D., Zhou, K., Zhang, L., Gan, X., & Zhao, J. (2019). Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring. Sensors and Actuators B: Chemical, 293, 336-341.
[159] Madry, M., Alwis, L., Binetti, L., Pajewski, L., & Beres-Pawlik, E. (2019). Simultaneous Measurement of Temperature and Relative Humidity Using a Dual-Wavelength Erbium-Doped Fiber Ring Laser Sensor. IEEE Sensors Journal, 19(20), 9215-9220.
[160] Liu, X., Zhang, X., Yang, J., & Du, X. (2019). Dual-ring dual-wavelength fiber laser sensor for simultaneous measurement of refractive index and ambient temperature with improved discrimination and detection limit. Appl Opt, 58(27), 7582-7587.
[161] Shi, J., Yang, F., Xu, W., Xu, D., Bai, H., Guo, C., Wu, Y., Zhang, S., Liu, T., & Yao, J. (2020). High-Resolution Temperature Sensor Based on Intracavity Sensing of Fiber Ring Laser. Journal of Lightwave Technology, 38(7), 2010-2014.
修改评论