[1] Kao, K. C., & Hockham, G. A. (1966). Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers.
[2] Bai, H., Li, S., Barreiros, J., Tu, Y., Pollock, C. R., & Shepherd, R. F. (2020). Stretchable distributed fiber-optic sensors. Science, 370(6518), 848-852.
[3] Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. (2019). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10(1), 5778.
[4] Luo, W., Chen, Y., & Xu, F. (2021). Recent Progress in Microfiber-Optic Sensors. Photonic Sensors, 11(1), 45-68.
[5] Sun, Q., Ai, F., Liu, D., Cheng, J., Luo, H., Peng, K., Luo, Y., Yan, Z., & Shum, P. P. (2017). M-OTDR sensing system based on 3D encoded microstructures. Scientific reports, 7(1), 1-8.
[6] Juarez, J. C., Maier, E. W., Choi, K. N., & Taylor, H. F. (2005). Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 23(6), 2081-2087.
[7] Lu, Y., Zhu, T., Chen, L., & Bao, X. (2010). Distributed vibration sensor based on coherent detection of phase-OTDR. Journal of Lightwave Technology, 28(22), 3243-3249.
[8] Bao, X., & Chen, L. (2012). Recent progress in distributed fiber optic sensors. sensors, 12(7), 8601-8639.
[9] Ashry, I., Mao, Y., Wang, B., Hveding, F., Bukhamsin, A. Y., Ng, T. K., & Ooi, B. S. (2022). A review of distributed fiber–optic sensing in the oil and gas industry. Journal of Lightwave Technology, 40(5), 1407-1431.
[10] Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B. T., Buric, M. P., & Ohodnicki, P. R. (2019). Distributed optical fiber sensing: Review and perspective. Applied Physics Reviews, 6(4), 041302.
[11] Fernández-Ruiz, M. R., Soto, M. A., Williams, E. F., Martin-Lopez, S., Zhan, Z., Gonzalez-Herraez, M., & Martins, H. F. (2020). Distributed acoustic sensing for seismic activity monitoring. APL Photonics, 5(3), 030901.
[12] Liu, X., Jin, B., Bai, Q., Wang, Y., Wang, D., & Wang, Y. (2016). Distributed Fiber-Optic Sensors for Vibration Detection. sensors, 16(8), 1164.
[13] Marra, G., Clivati, C., Luckett, R., Tampellini, A., Kronjäger, J., Wright, L., Mura, A., Levi, F., Robinson, S., & Xuereb, A. (2018). Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, 361(6401), 486-490.
[14] Motil, A., Bergman, A., & Tur, M. (2016). State of the art of Brillouin fiber-optic distributed sensing. Optics & Laser Technology, 78, 81-103.
[15] Li, J., Zhou, X., Xu, Y., Qiao, L., Zhang, J., & Zhang, M. (2022). Slope-assisted Raman distributed optical fiber sensing. Photonics Research, 10(1), 205-213.
[16] He, H., Shao, L.-Y., Luo, B., Li, Z., Zou, X., Zhang, Z., Pan, W., & Yan, L. (2016). Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing. Optics Express, 24(5), 4842-4855.
[17] Liu, S., Yu, F., Hong, R., Xu, W., Shao, L., & Wang, F. (2022). Advances in phase-sensitive optical time-domain reflectometry. Opto-Electronic Advances, 5(3), 200078-200071-200078-200028.
[18] Qin, Z., Chen, L., & Bao, X. (2012). Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics Technology Letters, 24(7), 542-544.
[19] He, H., Shao, L., Li, H., Pan, W., Luo, B., Zou, X., & Yan, L. (2017). SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm. IEEE Photonics Journal, 9(3), 1-10.
[20] Pan, Z., Liang, K., Ye, Q., Cai, H., Qu, R., & Fang, Z. (2011). Phase-sensitive OTDR system based on digital coherent detection. 2011 Asia Communications and Photonics Conference and Exhibition (ACP).
[21] Masoudi, A., Belal, M., & Newson, T. (2013). A distributed optical fibre dynamic strain sensor based on phase-OTDR. Measurement Science and Technology, 24(8), 085204.
[22] Alekseev, A., Vdovenko, V., Gorshkov, B., Potapov, V., & Simikin, D. (2014). A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal. Laser Physics, 24(11), 115106.
[23] Fang, G., Xu, T., Feng, S., & Li, F. (2015). Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. Journal of Lightwave Technology, 33(13), 2811-2816.
[24] Dong, Y., Chen, X., Liu, E., Fu, C., Zhang, H., & Lu, Z. (2016). Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer. Applied Optics, 55(28), 7810-7815.
[25] Wang, Z., Zhang, L., Wang, S., Xue, N., Peng, F., Fan, M., Sun, W., Qian, X., Rao, J., & Rao, Y. (2016). Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Optics Express, 24(2), 853-858.
[26] He, X., Xie, S., Liu, F., Cao, S., Gu, L., Zheng, X., & Zhang, M. (2017). Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR. Optics Letters, 42(3), 442-445.
[27] Jiang, J., Wang, Z.-n., Wang, Z.-t., Wu, Y., Lin, S., Xiong, J., Chen, Y., & Rao, Y. (2019). Coherent Kramers-Kronig Receiver for Φ-OTDR. Journal of Lightwave Technology, 37(18), 4799-4807.
[28] Lu, X., & Krebber, K. (2020). Direct detection based φOTDR using the Kramers-Kronig receiver. Optics Express, 28(24), 37058-37068.
[29] Soriano-Amat, M., Martins, H. F., Durán, V., Costa, L., Martin-Lopez, S., Gonzalez-Herraez, M., & Fernández-Ruiz, M. R. (2021). Time-expanded phase-sensitive optical time-domain reflectometry. Light: Science & Applications, 10(1), 51.
[30] Liu, S., Shao, L., Yu, F.-H., Xu, W., Vai, M. I., Xiao, D., Lin, W., Hu, J., Zhao, F., Wang, G., Wang, W., Liu, H., Shum, P. P., & Wang, F. (2022). Quantitative demodulation of distributed low-frequency vibration based on phase-shifted dual-pulse phase-sensitive OTDR with direct detection. Optics Express, 30(6), 10096-10109.
[31] Liu, S., Shao, L., Yu, F.-H., Lin, W., Xiao, D., Sun, S., Li, S., Pun, S. H., Mak, P. U., & Vai, M. I. (2023). Accelerating the phase demodulation process for heterodyne Φ-OTDR using spatial phase shifting. Optics Letters, 48(4), 1048-1051.
[32] Tejedor, J., Martins, H. F., Piote, D., Macias-Guarasa, J., Pastor-Graells, J., Martin-Lopez, S., Guillén, P. C., De Smet, F., Postvoll, W., & González-Herráez, M. (2016). Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. Journal of Lightwave Technology, 34(19), 4445-4453.
[33] Wu, H., Chen, J., Liu, X., Xiao, Y., Wang, M., Zheng, Y., & Rao, Y. (2019). One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. Journal of Lightwave Technology, 37(17), 4359-4366.
[34] Sha, Z., Feng, H., Rui, X., & Zeng, Z. (2021). Pig tracking utilizing fiber optic distributed vibration sensor and YOLO. Journal of Lightwave Technology, 39(13), 4535-4541.
[35] He, T., Sun, Q., Zhang, S., Li, H., Yan, B., Fan, C., Yan, Z., & Liu, D. (2022). A Dual-Stage-Recognition Network for Distributed Optical Fiber Sensing Perimeter Security System. Journal of Lightwave Technology.
[36] Wu, H., Gan, D., Xu, C., Liu, Y., Liu, X., Song, Y., & Rao, Y. (2022). Improved generalization in signal identification with unsupervised spiking neuron networks for fiber-optic distributed acoustic sensor. Journal of Lightwave Technology, 40(9), 3072-3083.
[37] Peng, F., Duan, N., Rao, Y.-J., & Li, J. (2014). Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technology Letters, 26(20), 2055-2057.
[38] Huang, M.-F., Salemi, M., Chen, Y., Zhao, J., Xia, T. J., Wellbrock, G. A., Huang, Y.-K., Milione, G., Ip, E., & Ji, P. (2019). First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. Journal of Lightwave Technology, 38(1), 75-81.
[39] Chen, Z., Zhang, L., Liu, H., Peng, P., Liu, Z., Shen, S., Chen, N., Zheng, S., Li, J., & Pang, F. (2020). 3D printing technique-improved phase-sensitive OTDR for breakdown discharge detection of gas-insulated switchgear. sensors, 20(4), 1045.
[40] Ding, Z.-W., Zhang, X.-P., Zou, N.-M., Xiong, F., Song, J.-Y., Fang, X., Wang, F., & Zhang, Y.-X. (2021). Phi-OTDR based on-line monitoring of overhead power transmission line. Journal of Lightwave Technology, 39(15), 5163-5169.
[41] Qin, W., Ma, G., Wang, S., Hu, J., Guo, T., & Shi, R.-B. (2023). Distributed Discharge Detection Based on Improved COTDR Method With Dual Frequency Pulses. IEEE Transactions on Instrumentation and Measurement, 72, 1-8.
[42] Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. (2018). Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509.
[43] Ellmauthaler, A., LeBlanc, M., Bush, J., Willis, M. E., Maida, J. L., & Wilson, G. A. (2020). Real-time DAS VSP acquisition and processing on single-and multi-mode fibers. IEEE Sensors Journal, 21(13), 14847-14852.
[44] Landrø, M., Bouffaut, L., Kriesell, H. J., Potter, J. R., Rørstadbotnen, R. A., Taweesintananon, K., Johansen, S. E., Brenne, J. K., Haukanes, A., & Schjelderup, O. (2022). Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable. Scientific reports, 12(1), 19226.
[45] Shao, L.-Y., Liu, S., Bandyopadhyay, S., Yu, F., Xu, W., Wang, C., Li, H., Vai, M. I., Du, L., & Zhang, J. (2019). Data-driven distributed optical vibration sensors: a review. IEEE Sensors Journal, 20(12), 6224-6239.
[46] Li, Y., Wang, Y., Xiao, L., Bai, Q., Liu, X., Gao, Y., Zhang, H., & Jin, B. (2021). Phase Demodulation Methods for Optical Fiber Vibration Sensing System: A Review. IEEE Sensors Journal, 22(3), 1842-1866.
[47] Lin, T. T., Bai, Y. X., Zhong, Z. C., & Gao, X. (2021). Phase-Sensitive Optical Time-Domain Reflectometric System Based on Optical Synchronous Heterodyne. IEEE Sensors Journal, 21(10), 12130-12136.
[48] He, H., Yan, L., Qian, H., Zhang, X., Luo, B., & Pan, W. (2020). Enhanced range of the dynamic strain measurement in phase-sensitive OTDR with tunable sensitivity. Optics Express, 28(1), 226-237.
[49] Fan, C., Li, H., He, T., Zhang, S., Yan, B., Yan, Z., & Sun, Q. (2021). Large dynamic range optical fiber distributed acoustic sensing (DAS) with differential-unwrapping-integral algorithm. Journal of Lightwave Technology, 39(22), 7274-7280.
[50] Jiang, F., Li, H., Zhang, Z., Hu, Z., Hu, Y., Zhang, Y., & Zhang, X. (2019). Undersampling for fiber distributed acoustic sensing based on coherent phase-OTDR. Optics Letters, 44(4), 911-914.
[51] Yu, F., Shao, L., Liu, S., Xu, W., Xiao, D., Liu, H., & Shum, P. P. (2022). Data Reduction in Phase-Sensitive OTDR with Ultra-Low Sampling Resolution and Undersampling Techniques. sensors, 22(17), 6386.
[52] Yu, F.-H., Liu, S., Shao, L., Xu, W., Xiao, D., Zhao, F., Hu, J., Lin, W., Wang, G., & Wang, W. (2022). Ultra-low sampling resolution technique for heterodyne phase-OTDR based distributed acoustic sensing. Optics Letters, 47(14), 3379-3382.
[53] Hulst, H. C. v. d. (1957). Light scattering by small particles. John Wiley and Sons Inc.
[54] Olshansky, R. (1979). Propagation in glass optical waveguides. Reviews of Modern Physics, 51(2), 341-367.
[55] Landau, L., & Lifshitz, E. (1959). Statistical Physics. American Journal of Physics, 27(5), 371-372.
[56] Maurer, R. D. (1973). Glass fibers for optical communications. Proceedings of the IEEE, 61(4), 452-462.
[57] Barnoski, M. K., Rourke, M. D., Jensen, S. M., & Melville, R. T. (1977). Optical time domain reflectometer. Applied Optics, 16(9), 2375-2379.
[58] Hartog, A. H. (2017). An introduction to distributed optical fibre sensors. Taylor & Francis Group.
[59] Zhang, Z., & Bao, X. (2008). Continuous and damped vibration detection based on fiber diversity detection sensor by Rayleigh backscattering. Journal of Lightwave Technology, 26(7), 832-838.
[60] Wuilpart, M., Aerssens, M., Gusarov, A., Moreau, P., & Mégret, P. (2017). Plasma current measurement in thermonuclear fusion reactors using a photon-counting POTDR. IEEE Photonics Technology Letters, 29(6), 547-550.
[61] Wang, F., Zhang, Y., Wang, W., Dou, R., Lu, J., Xu, W., & Zhang, X. (2018). Development of a multiperimeter sensing system based on POTDR. IEEE Photonics Journal, 10(3), 1-7.
[62] Eickhoff, W., & Ulrich, R. (1981). Optical frequency domain reflectometry in single‐mode fiber. Applied Physics Letters, 39(9), 693-695.
[63] Oberson, P., Huttner, B., Guinnard, O., Guinnard, L., Ribordy, G., & Gisin, N. (2000). Optical frequency domain reflectometry with a narrow linewidth fiber laser. IEEE Photonics Technology Letters, 12(7), 867-869.
[64] Ito, F., Fan, X., & Koshikiya, Y. (2012). Long-Range Coherent OFDR With Light Source Phase Noise Compensation. Journal of Lightwave Technology, 30(8), 1015-1024.
[65] Hua, P., Ding, Z., Liu, K., Guo, H., Pan, M., Zhang, T., Li, S., Jiang, J., & Liu, T. (2023). Distributed optical fiber biosensor based on optical frequency domain reflectometry. Biosensors and Bioelectronics, 228, 115184.
[66] Monet, F., Sefati, S., Lorre, P., Poiffaut, A., Kadoury, S., Armand, M., Iordachita, I., & Kashyap, R. (2020, 31 May). High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study. 2020 IEEE International Conference on Robotics and Automation (ICRA).
[67] Lu, X., & Thomas, P. J. (2020). Numerical modeling of ΦOTDR sensing using a refractive index perturbation approach. Journal of Lightwave Technology, 38(4), 974-980.
[68] Zhou, J., Pan, Z., Ye, Q., Cai, H., Qu, R., & Fang, Z. (2013). Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source. Journal of Lightwave Technology, 31(17), 2947-2954.
[69] Liokumovich, L. B., Ushakov, N. A., Kotov, O. I., Bisyarin, M. A., & Hartog, A. H. (2015). Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions. Journal of Lightwave Technology, 33(17), 3660-3671.
[70] Wu, H., Zhou, B., Zhu, K., Shang, C., Tam, H.-Y., & Lu, C. (2021). Pattern recognition in distributed fiber-optic acoustic sensor using an intensity and phase stacked convolutional neural network with data augmentation. Optics Express, 29(3), 3269-3283.
[71] He, H., Jiang, L., Pan, Y., Yi, A., Zou, X., Pan, W., Willner, A. E., Fan, X., He, Z., & Yan, L. (2023). Integrated sensing and communication in an optical fibre. Light: Science & Applications, 12(1), 25.
[72] Zou, W., Yang, S., Long, X., & Chen, J. (2015). Optical pulse compression reflectometry: proposal and proof-of-concept experiment. Optics Express, 23(1), 512-522.
[73] Dorize, C., & Awwad, E. (2018). Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes. Optics Express, 26(10), 12878-12890.
[74] Mompó, J. J., Shiloh, L., Arbel, N., Levanon, N., Loayssa, A., & Eyal, A. (2019). Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver. Journal of Lightwave Technology, 37(18), 4597-4602.
[75] Wu, Y., Wang, Z., Xiong, J., Jiang, J., & Rao, Y. (2020). Bipolar-Coding Φ-OTDR with Interference Fading Elimination and Frequency Drift Compensation. Journal of Lightwave Technology, 38(21), 6121-6128.
[76] Li, P., Wang, Y., Yin, K., Liu, X., Bai, Q., Zhang, H., Gao, Y., & Jin, B. (2023). Random coding method for coherent detection φ-OTDR without optical amplifier. Optics and Lasers in Engineering, 161, 107318.
[77] Peng, F., Wu, H., Jia, X.-H., Rao, Y.-J., Wang, Z.-N., & Peng, Z.-P. (2014). Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express, 22(11), 13804-13810.
[78] Wang, Z., Li, J., Fan, M., Zhang, L., Peng, F., Wu, H., Zeng, J., Zhou, Y., & Rao, Y. (2014). Phase-sensitive optical time-domain reflectometry with Brillouin amplification. Optics Letters, 39(15), 4313-4316.
[79] Wang, Z., Zeng, J., Li, J., Fan, M., Wu, H., Peng, F., Zhang, L., Zhou, Y., & Rao, Y. (2014). Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters, 39(20), 5866-5869.
[80] He, H., Luo, B., Zou, X., Pan, W., & Yan, L. (2018). Enhanced phase-sensitive OTDR system with pulse width modulation Brillouin amplification. Optics Express, 26(18), 23714-23727.
[81] Nuño, J., Martin-Lopez, S., Ania-Castañón, J. D., Gonzalez-Herraez, M., & Martins, H. F. (2021). Virtual transparency in ϕ-OTDR using second order Raman amplification and pump modulation. Optics Express, 29(22), 35725-35734.
[82] Preciado, J., Sevillano, P., Heras, C., Subías, J., Sanahuja, D., Carretero, E., & Martínez, J. J. (2021). Range and Bandwidth Extension in Direct-Detection C-OTDR Using Optical Repeaters. IEEE Sensors Journal, 21(24), 27526-27531.
[83] Pastor-Graells, J., Cortés, L. R., Fernández-Ruiz, M. R., Martins, H. F., Azaña, J., Martin-Lopez, S., & Gonzalez-Herraez, M. (2017). SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts. Optics Letters, 42(9), 1728-1731.
[84] Pan, Z., Liang, K., Zhou, J., Ye, Q., Cai, H., & Qu, R. (2012). Interference-fading-free phase-demodulated OTDR system. 2nd International Conference on Optical Fiber Sensors (OFS).
[85] Wang, Z., Pan, Z., Fang, Z., Ye, Q., Lu, B., Cai, H., & Qu, R. (2015). Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source. Optics Letters, 40(22), 5192-5195.
[86] Wu, M., Fan, X., Zhang, X., Yan, L., & He, Z. (2020). Frequency response enhancement of phase-sensitive OTDR for interrogating weak reflector array by using OFDM and vernier effect. Journal of Lightwave Technology, 38(17), 4874-4882.
[87] Li, S., Qin, Z., Liu, Z., Yang, W., Qu, S., Wang, Z., & Xu, Y. (2021). Long-distance Φ-OTDR with a flexible frequency response based on time division multiplexing. Optics Express, 29(21), 32833-32841.
[88] Zhang, Y., Xia, L., Cao, C., Sun, Z., Li, Y., & Zhang, X. (2017). A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response. Optics Communications, 382, 176-181.
[89] Ma, P., Liu, K., Sun, Z., Jiang, J., Wang, S., Xu, T., Xu, Z., & Liu, T. (2020). Distributed single fiber optic vibration sensing with high frequency response and multi-points accurate location. Optics and Lasers in Engineering, 129, 106060.
[90] Liu, H., Pang, F., Lv, L., Mei, X., Song, Y., Chen, J., & Wang, T. (2018). True Phase Measurement of Distributed Vibration Sensors Based on Heterodyne φ-OTDR. IEEE Photonics Journal, 10.
[91] Hong, R., Wang, F., Liu, Y., Tu, G., Liu, Z., Zhou, J., Zhang, Y., & Zhang, X. (2021). Enlarging Dynamic Strain Range in UWFBG Array-Based Φ-OTDR Assisted With Polarization Signal. IEEE Photonics Technology Letters, 33(18), 994-997.
[92] Tu, G., Zhang, X., Zhang, Y., Zhu, F., Xia, L., & Nakarmi, B. (2015). The Development of an Φ-OTDR System for Quantitative Vibration Measurement. IEEE Photonics Technology Letters, 27(12), 1349-1352.
[93] Wu, H., Xiao, S., Li, X., Wang, Z., Xu, J., & Rao, Y. (2015). Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR). Journal of Lightwave Technology, 33(15), 3156-3162.
[94] Zabihi, M., Chen, Y., Zhou, T., Liu, J., Shan, Y., Meng, Z., Wang, F., Zhang, Y., Zhang, X., & Chen, M. (2019). Continuous fading suppression method for Φ-OTDR systems using optimum tracking over multiple probe frequencies. Journal of Lightwave Technology, 37(14), 3602-3610.
[95] Fan, X., Yang, G., Wang, S., Liu, Q., & He, Z. (2017). Distributed fiber-optic vibration sensing based on phase extraction from optical reflectometry. Journal of Lightwave Technology, 35(16), 3281-3288.
[96] Yang, G., Fan, X., Wang, S., Wang, B., Liu, Q., & He, Z. (2016). Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR. IEEE Photonics Journal, 8(3), 1-12.
[97] Fu, Y., Xue, N., Wang, Z., Zhang, B., Xiong, J., & Rao, Y. (2018). Impact of I/Q Amplitude Imbalance on Coherent Φ-OTDR. Journal of Lightwave Technology, 36(4), 1069-1075.
[98] Xue, N., Fu, Y., Lu, C., Xiong, J., Yang, L., & Wang, Z. (2018). Characterization and compensation of phase offset in Φ-OTDR with heterodyne detection. Journal of Lightwave Technology, 36(23), 5481-5487.
[99] Sha, Z., Feng, H., & Zeng, Z. (2017). Phase demodulation method in phase-sensitive OTDR without coherent detection. Optics Express, 25(5), 4831-4844.
[100] He, X., Zhang, M., Xie, S., Liu, F., Gu, L., & Yi, D. (2018). Self-referenced accelerometer array multiplexed on a single fiber using a dual-pulse heterodyne phase-sensitive OTDR. Journal of Lightwave Technology, 36(14), 2973-2979.
[101] Alekseev, A., Gorshkov, B., Bashaev, A., Potapov, V., Taranov, M., & Simikin, D. (2021). Kalman filter based demodulation in a dual-pulse phase-OTDR. Laser Physics, 31(3), 035101.
[102] Masoudi, A., & Newson, T. P. (2017). High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution. Optics Letters, 42(2), 290-293.
[103] Chen, M., Masoudi, A., & Brambilla, G. (2019). Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR. Optics Express, 27(7), 9684-9695.
[104] Qian, H., Luo, B., He, H., Zhang, X., Zou, X., Pan, W., & Yan, L. (2020). Phase demodulation based on DCM algorithm in Φ-OTDR with self-interference balance detection. IEEE Photonics Technology Letters, 32(8), 473-476.
[105] Priest, R. (1982). Analysis of fiber interferometer utilizing 3 × 3 fiber coupler. IEEE Journal of Quantum Electronics, 18(10), 1601-1603.
[106] Yu, Z., Dahir, A. K. A., Dai, H., Luo, Y., Qi, G., & Li, Z. (2021). Distributed optical fiber vibration sensors based on unbalanced Michelson interferometer and PGC demodulation. Journal of Optics, 50, 1-6.
[107] Zhong, X., Zhang, B., Ren, J., Deng, H., Chen, X., & Ma, M. (2021). A Novel Φ-OTDR System With a Phase Demodulation Module Based on Sagnac Balanced Interferometer. Journal of Lightwave Technology, 39(22), 7307-7314.
[108] Debnath, S. K., & Park, Y. (2011). Real-time quantitative phase imaging with a spatial phase-shifting algorithm. Optics Letters, 36(23), 4677-4679.
[109] Sedgewick, R., & Flajolet, P. (2013). An Introduction to the Analysis of Algorithms (2nd ed.). Addison-Wesley Professional.
[110] Marple, L. (1999). Computing the discrete-time "analytic" signal via FFT. IEEE Transactions on Signal Processing, 47(9), 2600-2603.
[111] Zumbahlen, H. (2008). Op Amp Specifications. In Linear Circuit Design Handbook (pp. 43). Newnes.
[112] Wang, F., Liu, Z., Zhou, X., Li, S., Yuan, X., Zhang, Y., Shao, L., & Zhang, X. (2021). Oil and gas pipeline leakage recognition based on distributed vibration and temperature information fusion. Results in Optics, 5, 100131.
[113] Tejedor, J., Macias-Guarasa, J., Martins, H. F., Pastor-Graells, J., Martin-Lopez, S., Guillén, P. C., De Pauw, G., De Smet, F., Postvoll, W., & Ahlen, C. H. (2017). Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results. Journal of Lightwave Technology, 36(4), 1052-1062.
[114] Yang, Y., Zhang, H., & Li, Y. (2021). Pipeline safety early warning by multifeature-fusion CNN and LightGBM analysis of signals from distributed optical fiber sensors. IEEE Transactions on Instrumentation and Measurement, 70, 1-13.
[115] Liu, K., Tian, M., Liu, T., Jiang, J., Ding, Z., Chen, Q., Ma, C., He, C., Hu, H., & Zhang, X. (2015). A high-efficiency multiple events discrimination method in optical fiber perimeter security system. Journal of Lightwave Technology, 33(23), 4885-4890.
[116] Lyu, C., Huo, Z., Cheng, X., Jiang, J., Alimasi, A., & Liu, H. (2020). Distributed optical fiber sensing intrusion pattern recognition based on GAF and CNN. Journal of Lightwave Technology, 38(15), 4174-4182.
[117] Xu, W., Yu, F., Liu, S., Xiao, D., Hu, J., Zhao, F., Lin, W., Wang, G., Shen, X., & Wang, W. (2022). Real-time multi-class disturbance detection for Φ-OTDR based on YOLO algorithm. sensors, 22(5), 1994.
[118] Xin, L., Li, Z., Gui, X., Fu, X., Fan, M., Wang, J., & Wang, H. (2020). Surface intrusion event identification for subway tunnels using ultra-weak FBG array based fiber sensing. Optics Express, 28(5), 6794-6805.
[119] Liu, S., Yu, F., Xu, W., Liu, H., Shum, P., Vai, M. I., & Shao, L. (2021, Oct. 24). Direct Demodulation of Differential Phase from Φ-OTDR using Self-Homodyne Phase Diversity Receiver Asia Communications and Photonics Conference (ACP). Shanghai, China.
[120] Wang, X., Lu, B., Wang, Z., Zheng, H., Liang, J., Li, L., Ye, Q., Qu, R., & Cai, H. (2018). Interference-fading-free Φ-OTDR based on differential phase shift pulsing technology. IEEE Photonics Technology Letters, 31(1), 39-42.
[121] Bahabad, A. (2014). Diffraction from a moving grating. Optical and Quantum Electronics, 46(8), 1065-1077.
[122] Saleh, B. E. A., & Teich, M. C. (2007). Fundamentals of Photonics (3rd ed.). Wiley.
[123] Schreiber, H., & Bruning, J. H. (2007). Phase Shifting Interferometry. In Optical Shop Testing (pp. 547-666). Wiley.
[124] Mecozzi, A., Cantono, M., Castellanos, J. C., Kamalov, V., Muller, R., & Zhan, Z. (2021). Polarization sensing using submarine optical cables. Optica, 8(6), 788-795.
[125] Wang, F., Liu, Y., Wei, T., Zhang, Y., Ji, W., Zong, M., & Zhang, X. (2019). Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach. Optics Express, 27(15), 20468-20478.
[126] Bakhtiari Gorajoobi, S., Masoudi, A., & Brambilla, G. (2022). Polarization fading mitigation in distributed acoustic sensors based on a high-speed polarization rotator. Optics Letters, 47(5), 1283-1286.
[127] Bai, Y.-X., Lin, T.-T., & Zhong, Z.-C. (2021). Orthogonal Imbalance Compensation Method of Φ-OTDR System Based on RLS Algorithm. IEEE Sensors Journal, 21(22), 25730-25735.
[128] Watkins, L. R., & Collett, M. J. (2014). Ellipse fitting for interferometry. Part 2: experimental realization. Applied Optics, 53(32), 7697-7703.
[129] Flores, V. H., & Rivera, M. (2020). Robust two-step phase estimation using the Simplified Lissajous Ellipse Fitting method with Gabor Filters Bank preprocessing. Optics Communications, 461, 125286.
[130] Liu, F., Wu, Y., & Wu, F. (2015). Correction of phase extraction error in phase-shifting interferometry based on Lissajous figure and ellipse fitting technology. Optics Express, 23(8), 10794-10807.
[131] Zinsou, R., Wang, Y., Zou, J., Liu, X., Wang, Y., & Jin, B. (2019). Coherent optical pulse phase rotation reflectometry insensitive to I/Q quadrature imbalance. IEEE Sensors Journal, 20(3), 1336-1342.
[132] Dennis, J. E. J. (1977). Nonlinear Least-Squares. In D. Jacobs (Ed.), State of the Art in Numerical Analysis (pp. 269–312). Academic Press.
[133] Coleman, T. F., & Li, Y. (1996). An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization, 6(2), 418-445.
[134] Zhong, X., Zhang, C., Li, L., Liang, S., Li, Q., Lü, Q., Ding, X., & Cao, Q. (2014). Influences of laser source on phase-sensitivity optical time-domain reflectometer-based distributed intrusion sensor. Applied Optics, 53(21), 4645-4650.
[135] Zhang, L., Chen, L., & Bao, X. (2020). Unveiling delay-time-resolved phase noise statistics of narrow-linewidth laser via coherent optical time domain reflectometry. Optics Express, 28(5), 6719-6733.
[136] Li, J., Zhang, Z., Gan, J., Zhang, Z., Heng, X., Zhou, K., Zhao, H., Xu, S., & Yang, Z. (2019). Influence of laser linewidth on phase-OTDR system based on heterodyne detection. Journal of Lightwave Technology, 37(11), 2641-2647.
[137] Yuan, Q., Wang, F., Liu, T., Zhang, Y., & Zhang, X. (2018). Using an auxiliary Mach–Zehnder interferometer to compensate for the influence of laser-frequency-drift in Φ-OTDR. IEEE Photonics Journal, 11(1), 1-9.
[138] Yuan, Q., Wang, F., Liu, T., Liu, Y., Zhang, Y., Zhong, Z., & Zhang, X. (2019). Compensating for influence of laser-frequency-drift in phase-sensitive OTDR with twice differential method. Optics Express, 27(3), 3664-3671.
[139] Wang, D., Zou, J., Wang, Y., Jin, B., Bai, Q., Liu, X., & Liu, Y. (2020). Distributed optical fiber low-frequency vibration detecting using cross-correlation spectrum analysis. Journal of Lightwave Technology, 38(23), 6664-6670.
[140] Wang, Y., Lu, P., Mihailov, S., Chen, L., & Bao, X. (2021). Ultra-low frequency dynamic strain detection with laser frequency drifting compensation based on a random fiber grating array. Optics Letters, 46(4), 789-792.
[141] Liu, C., Deng, Z., Wang, Y., Jiang, J., Qiu, Z., & Wang, Z. (2022). Golay Coding Φ-OTDR With Distributed Frequency-Drift Compensation. IEEE Sensors Journal, 22(13), 12894-12899.
[142] Zabihi, M., & Krebber, K. (2022). Laser source frequency drift compensation in Φ-OTDR systems using multiple probe frequencies. Optics Express, 30(11), 19990-19998.
[143] Deriushkina, E., Rebolledo-Salgado, I., Mazur, M., Torres-Company, V., Andrekson, P., Schröder, J., & Karlsson, M. (2022). Dual-Comb Swept-Wavelength Interferometry: Theory and Experiment. Journal of Lightwave Technology, 40(19), 6508-6516.
[144] Hilweg, C., Shadmany, D., Walther, P., Mavalvala, N., & Sudhir, V. (2022). Limits and prospects for long-baseline optical fiber interferometry. Optica, 9(11), 1238-1252.
[145] Chen, W., Ma, X., Ma, Q., & Wen, J. (2020). Denoising method of the Φ-OTDR system based on EMD-PCC. IEEE Sensors Journal, 21(10), 12113-12118.
[146] Wang, P., Lv, Y., Wang, Y., Liu, X., Bai, Q., Zhang, H., & Jin, B. (2020). Adaptability and anti-noise capacity enhancement for ϕ-OTDR with deep learning. Journal of Lightwave Technology, 38(23), 6699-6706.
[147] Bai, Y.-X., Lin, T.-T., & Zhong, Z.-C. (2021). Noise reduction method of Φ-OTDR system based on EMD-TFPF algorithm. IEEE Sensors Journal, 21(21), 24084-24089.
[148] Jiang, F., Zhang, Z., Lu, Z., Li, H., Tian, Y., Zhang, Y., & Zhang, X. (2021). High-fidelity acoustic signal enhancement for phase-OTDR using supervised learning. Optics Express, 29(21), 33467-33480.
[149] Ma, Q., Gao, X., Gao, Y., Zhang, X., & Zhong, Z. (2021). A study on noise reduction of Φ-OTDR system based on VSS-NLMS algorithm. IEEE Sensors Journal, 21(6), 7648-7656.
[150] Shang, Y., Yang, J., Chen, W., Yi, J., Sun, M., Du, Y., Huang, S., Zhao, W., Qu, S., & Wang, W. (2023). Speech signal enhancement based on deep learning in distributed acoustic sensing. Optics Express, 31(3), 4067-4079.
修改评论