中文版 | English
题名

Research on Rayleigh-Scattering-based Distributed Optical Fiber Vibration Sensing Systems

姓名
姓名拼音
LIU Shuaiqi
学号
11853004
学位类型
博士
学位专业
Electrical and Computer Engineering
导师
邵理阳
导师单位
电子与电气工程系
外机构导师
韦孟宇
外机构导师单位
澳门大学
论文答辩日期
2023-11-03
论文提交日期
2023-11-16
学位授予单位
澳门大学
学位授予地点
澳门
摘要

This thesis studies the distributed acoustic sensing (DAS) technology that utilizes the Rayleigh backscattering (RBS) light within optical fiber as the sensing signal. Because it simultaneously offers the advantage of long coverage range and high spatial resolution while remaining compatible with existing optical fiber communication infrastructures, DAS technology is becoming increasingly important over recent years, especially in the oil and gas industry. However, conventional DAS systems generally require the use of hardware of large bandwidth and high sampling rate for signal detection, and expensive signal processing unit for real-time acoustic wave demodulation. The large-scale industrial adoption of the DAS technology is therefore limited by its hardware requirements and computational complexity. This thesis is focused on developing signal demodulation algorithms and sensing principles that reduces computational complexity and hardware requirements, eventually realizing distributed acoustic sensing with cost-effective configurations.

Phase-Sensitive Optical Time-Domain Reflectometry (Φ-OTDR) is the key sensing technique widely adopted for DAS system. To investigate the acoustic sensing algorithms and configurations of Φ-OTDR, this thesis first establishes the theoretical model of Φ-OTDR, including the physical process of RBS light generation, the conventional sensing configurations, and signal demodulation algorithms.

Based on the theoretical analysis, this thesis then proposes a signal demodulation algorithm based on spatial phase shifting (SPS) technique for heterodyne Φ-OTDR. By exploiting the phase differences between the heterodyne signal from adjacent spatial sampling channels, the orthogonal signal can be directly generated from the original signal with simple algebra calculations. The computational complexity of the signal demodulation process is significantly decreased by using the SPS method compared to conventional methods. Experimental results confirm that the proposed SPS method is at least 100% faster than the conventional methods with negligible performance tradeoff.

To further decrease the required detection bandwidth and sampling rate, this thesis then investigates the sensing principle of self-homodyne Φ-OTDR. Phase diversity technique is integrated into two schemes of self-homodyne Φ-OTDR in either the transmitter side or the detection side for low computational complexity signal demodulation. Both proposed schemes satisfy the requirements of low system sampling rate and low system cost, offering cost-effective DAS solutions for possible on-site system deployments and large-scale installations.

This thesis then studies the compensation method for the I/Q imbalance issue in self-homodyne Φ-OTDR. The Lissajous figure fitting (LFF) method is proposed and proved effective in determining the imbalance parameters and correcting the signal distortions caused by the I/Q imbalance. By employing this approach, the advantage of cost-effectiveness is preserved for self-homodyne Φ-OTDR system, while also improving its performance of DAS signal demodulation.

Considering the overall theoretical models, numerical simulations and experimental demonstrations, this thesis ultimately aims to accelerate the signal demodulation process and simplify the system configuration for Φ-OTDR based DAS systems, in an effort to realize a cost-effective DAS solution and promote its industrial potentials.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023-11
参考文献列表

[1] Kao, K. C., & Hockham, G. A. (1966). Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers.
[2] Bai, H., Li, S., Barreiros, J., Tu, Y., Pollock, C. R., & Shepherd, R. F. (2020). Stretchable distributed fiber-optic sensors. Science, 370(6518), 848-852.
[3] Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. (2019). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10(1), 5778.
[4] Luo, W., Chen, Y., & Xu, F. (2021). Recent Progress in Microfiber-Optic Sensors. Photonic Sensors, 11(1), 45-68.
[5] Sun, Q., Ai, F., Liu, D., Cheng, J., Luo, H., Peng, K., Luo, Y., Yan, Z., & Shum, P. P. (2017). M-OTDR sensing system based on 3D encoded microstructures. Scientific reports, 7(1), 1-8.
[6] Juarez, J. C., Maier, E. W., Choi, K. N., & Taylor, H. F. (2005). Distributed fiber-optic intrusion sensor system. Journal of Lightwave Technology, 23(6), 2081-2087.
[7] Lu, Y., Zhu, T., Chen, L., & Bao, X. (2010). Distributed vibration sensor based on coherent detection of phase-OTDR. Journal of Lightwave Technology, 28(22), 3243-3249.
[8] Bao, X., & Chen, L. (2012). Recent progress in distributed fiber optic sensors. sensors, 12(7), 8601-8639.
[9] Ashry, I., Mao, Y., Wang, B., Hveding, F., Bukhamsin, A. Y., Ng, T. K., & Ooi, B. S. (2022). A review of distributed fiber–optic sensing in the oil and gas industry. Journal of Lightwave Technology, 40(5), 1407-1431.
[10] Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B. T., Buric, M. P., & Ohodnicki, P. R. (2019). Distributed optical fiber sensing: Review and perspective. Applied Physics Reviews, 6(4), 041302.
[11] Fernández-Ruiz, M. R., Soto, M. A., Williams, E. F., Martin-Lopez, S., Zhan, Z., Gonzalez-Herraez, M., & Martins, H. F. (2020). Distributed acoustic sensing for seismic activity monitoring. APL Photonics, 5(3), 030901.
[12] Liu, X., Jin, B., Bai, Q., Wang, Y., Wang, D., & Wang, Y. (2016). Distributed Fiber-Optic Sensors for Vibration Detection. sensors, 16(8), 1164.
[13] Marra, G., Clivati, C., Luckett, R., Tampellini, A., Kronjäger, J., Wright, L., Mura, A., Levi, F., Robinson, S., & Xuereb, A. (2018). Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, 361(6401), 486-490.
[14] Motil, A., Bergman, A., & Tur, M. (2016). State of the art of Brillouin fiber-optic distributed sensing. Optics & Laser Technology, 78, 81-103.
[15] Li, J., Zhou, X., Xu, Y., Qiao, L., Zhang, J., & Zhang, M. (2022). Slope-assisted Raman distributed optical fiber sensing. Photonics Research, 10(1), 205-213.
[16] He, H., Shao, L.-Y., Luo, B., Li, Z., Zou, X., Zhang, Z., Pan, W., & Yan, L. (2016). Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing. Optics Express, 24(5), 4842-4855.
[17] Liu, S., Yu, F., Hong, R., Xu, W., Shao, L., & Wang, F. (2022). Advances in phase-sensitive optical time-domain reflectometry. Opto-Electronic Advances, 5(3), 200078-200071-200078-200028.
[18] Qin, Z., Chen, L., & Bao, X. (2012). Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics Technology Letters, 24(7), 542-544.
[19] He, H., Shao, L., Li, H., Pan, W., Luo, B., Zou, X., & Yan, L. (2017). SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm. IEEE Photonics Journal, 9(3), 1-10.
[20] Pan, Z., Liang, K., Ye, Q., Cai, H., Qu, R., & Fang, Z. (2011). Phase-sensitive OTDR system based on digital coherent detection. 2011 Asia Communications and Photonics Conference and Exhibition (ACP).
[21] Masoudi, A., Belal, M., & Newson, T. (2013). A distributed optical fibre dynamic strain sensor based on phase-OTDR. Measurement Science and Technology, 24(8), 085204.
[22] Alekseev, A., Vdovenko, V., Gorshkov, B., Potapov, V., & Simikin, D. (2014). A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal. Laser Physics, 24(11), 115106.
[23] Fang, G., Xu, T., Feng, S., & Li, F. (2015). Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. Journal of Lightwave Technology, 33(13), 2811-2816.
[24] Dong, Y., Chen, X., Liu, E., Fu, C., Zhang, H., & Lu, Z. (2016). Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer. Applied Optics, 55(28), 7810-7815.
[25] Wang, Z., Zhang, L., Wang, S., Xue, N., Peng, F., Fan, M., Sun, W., Qian, X., Rao, J., & Rao, Y. (2016). Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Optics Express, 24(2), 853-858.
[26] He, X., Xie, S., Liu, F., Cao, S., Gu, L., Zheng, X., & Zhang, M. (2017). Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR. Optics Letters, 42(3), 442-445.
[27] Jiang, J., Wang, Z.-n., Wang, Z.-t., Wu, Y., Lin, S., Xiong, J., Chen, Y., & Rao, Y. (2019). Coherent Kramers-Kronig Receiver for Φ-OTDR. Journal of Lightwave Technology, 37(18), 4799-4807.
[28] Lu, X., & Krebber, K. (2020). Direct detection based φOTDR using the Kramers-Kronig receiver. Optics Express, 28(24), 37058-37068.
[29] Soriano-Amat, M., Martins, H. F., Durán, V., Costa, L., Martin-Lopez, S., Gonzalez-Herraez, M., & Fernández-Ruiz, M. R. (2021). Time-expanded phase-sensitive optical time-domain reflectometry. Light: Science & Applications, 10(1), 51.
[30] Liu, S., Shao, L., Yu, F.-H., Xu, W., Vai, M. I., Xiao, D., Lin, W., Hu, J., Zhao, F., Wang, G., Wang, W., Liu, H., Shum, P. P., & Wang, F. (2022). Quantitative demodulation of distributed low-frequency vibration based on phase-shifted dual-pulse phase-sensitive OTDR with direct detection. Optics Express, 30(6), 10096-10109.
[31] Liu, S., Shao, L., Yu, F.-H., Lin, W., Xiao, D., Sun, S., Li, S., Pun, S. H., Mak, P. U., & Vai, M. I. (2023). Accelerating the phase demodulation process for heterodyne Φ-OTDR using spatial phase shifting. Optics Letters, 48(4), 1048-1051.
[32] Tejedor, J., Martins, H. F., Piote, D., Macias-Guarasa, J., Pastor-Graells, J., Martin-Lopez, S., Guillén, P. C., De Smet, F., Postvoll, W., & González-Herráez, M. (2016). Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. Journal of Lightwave Technology, 34(19), 4445-4453.
[33] Wu, H., Chen, J., Liu, X., Xiao, Y., Wang, M., Zheng, Y., & Rao, Y. (2019). One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. Journal of Lightwave Technology, 37(17), 4359-4366.
[34] Sha, Z., Feng, H., Rui, X., & Zeng, Z. (2021). Pig tracking utilizing fiber optic distributed vibration sensor and YOLO. Journal of Lightwave Technology, 39(13), 4535-4541.
[35] He, T., Sun, Q., Zhang, S., Li, H., Yan, B., Fan, C., Yan, Z., & Liu, D. (2022). A Dual-Stage-Recognition Network for Distributed Optical Fiber Sensing Perimeter Security System. Journal of Lightwave Technology.
[36] Wu, H., Gan, D., Xu, C., Liu, Y., Liu, X., Song, Y., & Rao, Y. (2022). Improved generalization in signal identification with unsupervised spiking neuron networks for fiber-optic distributed acoustic sensor. Journal of Lightwave Technology, 40(9), 3072-3083.
[37] Peng, F., Duan, N., Rao, Y.-J., & Li, J. (2014). Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technology Letters, 26(20), 2055-2057.
[38] Huang, M.-F., Salemi, M., Chen, Y., Zhao, J., Xia, T. J., Wellbrock, G. A., Huang, Y.-K., Milione, G., Ip, E., & Ji, P. (2019). First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. Journal of Lightwave Technology, 38(1), 75-81.
[39] Chen, Z., Zhang, L., Liu, H., Peng, P., Liu, Z., Shen, S., Chen, N., Zheng, S., Li, J., & Pang, F. (2020). 3D printing technique-improved phase-sensitive OTDR for breakdown discharge detection of gas-insulated switchgear. sensors, 20(4), 1045.
[40] Ding, Z.-W., Zhang, X.-P., Zou, N.-M., Xiong, F., Song, J.-Y., Fang, X., Wang, F., & Zhang, Y.-X. (2021). Phi-OTDR based on-line monitoring of overhead power transmission line. Journal of Lightwave Technology, 39(15), 5163-5169.
[41] Qin, W., Ma, G., Wang, S., Hu, J., Guo, T., & Shi, R.-B. (2023). Distributed Discharge Detection Based on Improved COTDR Method With Dual Frequency Pulses. IEEE Transactions on Instrumentation and Measurement, 72, 1-8.
[42] Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G. P., Henninges, J., Weber, M., & Krawczyk, C. M. (2018). Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509.
[43] Ellmauthaler, A., LeBlanc, M., Bush, J., Willis, M. E., Maida, J. L., & Wilson, G. A. (2020). Real-time DAS VSP acquisition and processing on single-and multi-mode fibers. IEEE Sensors Journal, 21(13), 14847-14852.
[44] Landrø, M., Bouffaut, L., Kriesell, H. J., Potter, J. R., Rørstadbotnen, R. A., Taweesintananon, K., Johansen, S. E., Brenne, J. K., Haukanes, A., & Schjelderup, O. (2022). Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable. Scientific reports, 12(1), 19226.
[45] Shao, L.-Y., Liu, S., Bandyopadhyay, S., Yu, F., Xu, W., Wang, C., Li, H., Vai, M. I., Du, L., & Zhang, J. (2019). Data-driven distributed optical vibration sensors: a review. IEEE Sensors Journal, 20(12), 6224-6239.
[46] Li, Y., Wang, Y., Xiao, L., Bai, Q., Liu, X., Gao, Y., Zhang, H., & Jin, B. (2021). Phase Demodulation Methods for Optical Fiber Vibration Sensing System: A Review. IEEE Sensors Journal, 22(3), 1842-1866.
[47] Lin, T. T., Bai, Y. X., Zhong, Z. C., & Gao, X. (2021). Phase-Sensitive Optical Time-Domain Reflectometric System Based on Optical Synchronous Heterodyne. IEEE Sensors Journal, 21(10), 12130-12136.
[48] He, H., Yan, L., Qian, H., Zhang, X., Luo, B., & Pan, W. (2020). Enhanced range of the dynamic strain measurement in phase-sensitive OTDR with tunable sensitivity. Optics Express, 28(1), 226-237.
[49] Fan, C., Li, H., He, T., Zhang, S., Yan, B., Yan, Z., & Sun, Q. (2021). Large dynamic range optical fiber distributed acoustic sensing (DAS) with differential-unwrapping-integral algorithm. Journal of Lightwave Technology, 39(22), 7274-7280.
[50] Jiang, F., Li, H., Zhang, Z., Hu, Z., Hu, Y., Zhang, Y., & Zhang, X. (2019). Undersampling for fiber distributed acoustic sensing based on coherent phase-OTDR. Optics Letters, 44(4), 911-914.
[51] Yu, F., Shao, L., Liu, S., Xu, W., Xiao, D., Liu, H., & Shum, P. P. (2022). Data Reduction in Phase-Sensitive OTDR with Ultra-Low Sampling Resolution and Undersampling Techniques. sensors, 22(17), 6386.
[52] Yu, F.-H., Liu, S., Shao, L., Xu, W., Xiao, D., Zhao, F., Hu, J., Lin, W., Wang, G., & Wang, W. (2022). Ultra-low sampling resolution technique for heterodyne phase-OTDR based distributed acoustic sensing. Optics Letters, 47(14), 3379-3382.
[53] Hulst, H. C. v. d. (1957). Light scattering by small particles. John Wiley and Sons Inc.
[54] Olshansky, R. (1979). Propagation in glass optical waveguides. Reviews of Modern Physics, 51(2), 341-367.
[55] Landau, L., & Lifshitz, E. (1959). Statistical Physics. American Journal of Physics, 27(5), 371-372.
[56] Maurer, R. D. (1973). Glass fibers for optical communications. Proceedings of the IEEE, 61(4), 452-462.
[57] Barnoski, M. K., Rourke, M. D., Jensen, S. M., & Melville, R. T. (1977). Optical time domain reflectometer. Applied Optics, 16(9), 2375-2379.
[58] Hartog, A. H. (2017). An introduction to distributed optical fibre sensors. Taylor & Francis Group.
[59] Zhang, Z., & Bao, X. (2008). Continuous and damped vibration detection based on fiber diversity detection sensor by Rayleigh backscattering. Journal of Lightwave Technology, 26(7), 832-838.
[60] Wuilpart, M., Aerssens, M., Gusarov, A., Moreau, P., & Mégret, P. (2017). Plasma current measurement in thermonuclear fusion reactors using a photon-counting POTDR. IEEE Photonics Technology Letters, 29(6), 547-550.
[61] Wang, F., Zhang, Y., Wang, W., Dou, R., Lu, J., Xu, W., & Zhang, X. (2018). Development of a multiperimeter sensing system based on POTDR. IEEE Photonics Journal, 10(3), 1-7.
[62] Eickhoff, W., & Ulrich, R. (1981). Optical frequency domain reflectometry in single‐mode fiber. Applied Physics Letters, 39(9), 693-695.
[63] Oberson, P., Huttner, B., Guinnard, O., Guinnard, L., Ribordy, G., & Gisin, N. (2000). Optical frequency domain reflectometry with a narrow linewidth fiber laser. IEEE Photonics Technology Letters, 12(7), 867-869.
[64] Ito, F., Fan, X., & Koshikiya, Y. (2012). Long-Range Coherent OFDR With Light Source Phase Noise Compensation. Journal of Lightwave Technology, 30(8), 1015-1024.
[65] Hua, P., Ding, Z., Liu, K., Guo, H., Pan, M., Zhang, T., Li, S., Jiang, J., & Liu, T. (2023). Distributed optical fiber biosensor based on optical frequency domain reflectometry. Biosensors and Bioelectronics, 228, 115184.
[66] Monet, F., Sefati, S., Lorre, P., Poiffaut, A., Kadoury, S., Armand, M., Iordachita, I., & Kashyap, R. (2020, 31 May). High-Resolution Optical Fiber Shape Sensing of Continuum Robots: A Comparative Study. 2020 IEEE International Conference on Robotics and Automation (ICRA).
[67] Lu, X., & Thomas, P. J. (2020). Numerical modeling of ΦOTDR sensing using a refractive index perturbation approach. Journal of Lightwave Technology, 38(4), 974-980.
[68] Zhou, J., Pan, Z., Ye, Q., Cai, H., Qu, R., & Fang, Z. (2013). Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source. Journal of Lightwave Technology, 31(17), 2947-2954.
[69] Liokumovich, L. B., Ushakov, N. A., Kotov, O. I., Bisyarin, M. A., & Hartog, A. H. (2015). Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions. Journal of Lightwave Technology, 33(17), 3660-3671.
[70] Wu, H., Zhou, B., Zhu, K., Shang, C., Tam, H.-Y., & Lu, C. (2021). Pattern recognition in distributed fiber-optic acoustic sensor using an intensity and phase stacked convolutional neural network with data augmentation. Optics Express, 29(3), 3269-3283.
[71] He, H., Jiang, L., Pan, Y., Yi, A., Zou, X., Pan, W., Willner, A. E., Fan, X., He, Z., & Yan, L. (2023). Integrated sensing and communication in an optical fibre. Light: Science & Applications, 12(1), 25.
[72] Zou, W., Yang, S., Long, X., & Chen, J. (2015). Optical pulse compression reflectometry: proposal and proof-of-concept experiment. Optics Express, 23(1), 512-522.
[73] Dorize, C., & Awwad, E. (2018). Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes. Optics Express, 26(10), 12878-12890.
[74] Mompó, J. J., Shiloh, L., Arbel, N., Levanon, N., Loayssa, A., & Eyal, A. (2019). Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver. Journal of Lightwave Technology, 37(18), 4597-4602.
[75] Wu, Y., Wang, Z., Xiong, J., Jiang, J., & Rao, Y. (2020). Bipolar-Coding Φ-OTDR with Interference Fading Elimination and Frequency Drift Compensation. Journal of Lightwave Technology, 38(21), 6121-6128.
[76] Li, P., Wang, Y., Yin, K., Liu, X., Bai, Q., Zhang, H., Gao, Y., & Jin, B. (2023). Random coding method for coherent detection φ-OTDR without optical amplifier. Optics and Lasers in Engineering, 161, 107318.
[77] Peng, F., Wu, H., Jia, X.-H., Rao, Y.-J., Wang, Z.-N., & Peng, Z.-P. (2014). Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Optics Express, 22(11), 13804-13810.
[78] Wang, Z., Li, J., Fan, M., Zhang, L., Peng, F., Wu, H., Zeng, J., Zhou, Y., & Rao, Y. (2014). Phase-sensitive optical time-domain reflectometry with Brillouin amplification. Optics Letters, 39(15), 4313-4316.
[79] Wang, Z., Zeng, J., Li, J., Fan, M., Wu, H., Peng, F., Zhang, L., Zhou, Y., & Rao, Y. (2014). Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters, 39(20), 5866-5869.
[80] He, H., Luo, B., Zou, X., Pan, W., & Yan, L. (2018). Enhanced phase-sensitive OTDR system with pulse width modulation Brillouin amplification. Optics Express, 26(18), 23714-23727.
[81] Nuño, J., Martin-Lopez, S., Ania-Castañón, J. D., Gonzalez-Herraez, M., & Martins, H. F. (2021). Virtual transparency in ϕ-OTDR using second order Raman amplification and pump modulation. Optics Express, 29(22), 35725-35734.
[82] Preciado, J., Sevillano, P., Heras, C., Subías, J., Sanahuja, D., Carretero, E., & Martínez, J. J. (2021). Range and Bandwidth Extension in Direct-Detection C-OTDR Using Optical Repeaters. IEEE Sensors Journal, 21(24), 27526-27531.
[83] Pastor-Graells, J., Cortés, L. R., Fernández-Ruiz, M. R., Martins, H. F., Azaña, J., Martin-Lopez, S., & Gonzalez-Herraez, M. (2017). SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts. Optics Letters, 42(9), 1728-1731.
[84] Pan, Z., Liang, K., Zhou, J., Ye, Q., Cai, H., & Qu, R. (2012). Interference-fading-free phase-demodulated OTDR system. 2nd International Conference on Optical Fiber Sensors (OFS).
[85] Wang, Z., Pan, Z., Fang, Z., Ye, Q., Lu, B., Cai, H., & Qu, R. (2015). Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source. Optics Letters, 40(22), 5192-5195.
[86] Wu, M., Fan, X., Zhang, X., Yan, L., & He, Z. (2020). Frequency response enhancement of phase-sensitive OTDR for interrogating weak reflector array by using OFDM and vernier effect. Journal of Lightwave Technology, 38(17), 4874-4882.
[87] Li, S., Qin, Z., Liu, Z., Yang, W., Qu, S., Wang, Z., & Xu, Y. (2021). Long-distance Φ-OTDR with a flexible frequency response based on time division multiplexing. Optics Express, 29(21), 32833-32841.
[88] Zhang, Y., Xia, L., Cao, C., Sun, Z., Li, Y., & Zhang, X. (2017). A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response. Optics Communications, 382, 176-181.
[89] Ma, P., Liu, K., Sun, Z., Jiang, J., Wang, S., Xu, T., Xu, Z., & Liu, T. (2020). Distributed single fiber optic vibration sensing with high frequency response and multi-points accurate location. Optics and Lasers in Engineering, 129, 106060.
[90] Liu, H., Pang, F., Lv, L., Mei, X., Song, Y., Chen, J., & Wang, T. (2018). True Phase Measurement of Distributed Vibration Sensors Based on Heterodyne φ-OTDR. IEEE Photonics Journal, 10.
[91] Hong, R., Wang, F., Liu, Y., Tu, G., Liu, Z., Zhou, J., Zhang, Y., & Zhang, X. (2021). Enlarging Dynamic Strain Range in UWFBG Array-Based Φ-OTDR Assisted With Polarization Signal. IEEE Photonics Technology Letters, 33(18), 994-997.
[92] Tu, G., Zhang, X., Zhang, Y., Zhu, F., Xia, L., & Nakarmi, B. (2015). The Development of an Φ-OTDR System for Quantitative Vibration Measurement. IEEE Photonics Technology Letters, 27(12), 1349-1352.
[93] Wu, H., Xiao, S., Li, X., Wang, Z., Xu, J., & Rao, Y. (2015). Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR). Journal of Lightwave Technology, 33(15), 3156-3162.
[94] Zabihi, M., Chen, Y., Zhou, T., Liu, J., Shan, Y., Meng, Z., Wang, F., Zhang, Y., Zhang, X., & Chen, M. (2019). Continuous fading suppression method for Φ-OTDR systems using optimum tracking over multiple probe frequencies. Journal of Lightwave Technology, 37(14), 3602-3610.
[95] Fan, X., Yang, G., Wang, S., Liu, Q., & He, Z. (2017). Distributed fiber-optic vibration sensing based on phase extraction from optical reflectometry. Journal of Lightwave Technology, 35(16), 3281-3288.
[96] Yang, G., Fan, X., Wang, S., Wang, B., Liu, Q., & He, Z. (2016). Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR. IEEE Photonics Journal, 8(3), 1-12.
[97] Fu, Y., Xue, N., Wang, Z., Zhang, B., Xiong, J., & Rao, Y. (2018). Impact of I/Q Amplitude Imbalance on Coherent Φ-OTDR. Journal of Lightwave Technology, 36(4), 1069-1075.
[98] Xue, N., Fu, Y., Lu, C., Xiong, J., Yang, L., & Wang, Z. (2018). Characterization and compensation of phase offset in Φ-OTDR with heterodyne detection. Journal of Lightwave Technology, 36(23), 5481-5487.
[99] Sha, Z., Feng, H., & Zeng, Z. (2017). Phase demodulation method in phase-sensitive OTDR without coherent detection. Optics Express, 25(5), 4831-4844.
[100] He, X., Zhang, M., Xie, S., Liu, F., Gu, L., & Yi, D. (2018). Self-referenced accelerometer array multiplexed on a single fiber using a dual-pulse heterodyne phase-sensitive OTDR. Journal of Lightwave Technology, 36(14), 2973-2979.
[101] Alekseev, A., Gorshkov, B., Bashaev, A., Potapov, V., Taranov, M., & Simikin, D. (2021). Kalman filter based demodulation in a dual-pulse phase-OTDR. Laser Physics, 31(3), 035101.
[102] Masoudi, A., & Newson, T. P. (2017). High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution. Optics Letters, 42(2), 290-293.
[103] Chen, M., Masoudi, A., & Brambilla, G. (2019). Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR. Optics Express, 27(7), 9684-9695.
[104] Qian, H., Luo, B., He, H., Zhang, X., Zou, X., Pan, W., & Yan, L. (2020). Phase demodulation based on DCM algorithm in Φ-OTDR with self-interference balance detection. IEEE Photonics Technology Letters, 32(8), 473-476.
[105] Priest, R. (1982). Analysis of fiber interferometer utilizing 3 × 3 fiber coupler. IEEE Journal of Quantum Electronics, 18(10), 1601-1603.
[106] Yu, Z., Dahir, A. K. A., Dai, H., Luo, Y., Qi, G., & Li, Z. (2021). Distributed optical fiber vibration sensors based on unbalanced Michelson interferometer and PGC demodulation. Journal of Optics, 50, 1-6.
[107] Zhong, X., Zhang, B., Ren, J., Deng, H., Chen, X., & Ma, M. (2021). A Novel Φ-OTDR System With a Phase Demodulation Module Based on Sagnac Balanced Interferometer. Journal of Lightwave Technology, 39(22), 7307-7314.
[108] Debnath, S. K., & Park, Y. (2011). Real-time quantitative phase imaging with a spatial phase-shifting algorithm. Optics Letters, 36(23), 4677-4679.
[109] Sedgewick, R., & Flajolet, P. (2013). An Introduction to the Analysis of Algorithms (2nd ed.). Addison-Wesley Professional.
[110] Marple, L. (1999). Computing the discrete-time "analytic" signal via FFT. IEEE Transactions on Signal Processing, 47(9), 2600-2603.
[111] Zumbahlen, H. (2008). Op Amp Specifications. In Linear Circuit Design Handbook (pp. 43). Newnes.
[112] Wang, F., Liu, Z., Zhou, X., Li, S., Yuan, X., Zhang, Y., Shao, L., & Zhang, X. (2021). Oil and gas pipeline leakage recognition based on distributed vibration and temperature information fusion. Results in Optics, 5, 100131.
[113] Tejedor, J., Macias-Guarasa, J., Martins, H. F., Pastor-Graells, J., Martin-Lopez, S., Guillén, P. C., De Pauw, G., De Smet, F., Postvoll, W., & Ahlen, C. H. (2017). Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results. Journal of Lightwave Technology, 36(4), 1052-1062.
[114] Yang, Y., Zhang, H., & Li, Y. (2021). Pipeline safety early warning by multifeature-fusion CNN and LightGBM analysis of signals from distributed optical fiber sensors. IEEE Transactions on Instrumentation and Measurement, 70, 1-13.
[115] Liu, K., Tian, M., Liu, T., Jiang, J., Ding, Z., Chen, Q., Ma, C., He, C., Hu, H., & Zhang, X. (2015). A high-efficiency multiple events discrimination method in optical fiber perimeter security system. Journal of Lightwave Technology, 33(23), 4885-4890.
[116] Lyu, C., Huo, Z., Cheng, X., Jiang, J., Alimasi, A., & Liu, H. (2020). Distributed optical fiber sensing intrusion pattern recognition based on GAF and CNN. Journal of Lightwave Technology, 38(15), 4174-4182.
[117] Xu, W., Yu, F., Liu, S., Xiao, D., Hu, J., Zhao, F., Lin, W., Wang, G., Shen, X., & Wang, W. (2022). Real-time multi-class disturbance detection for Φ-OTDR based on YOLO algorithm. sensors, 22(5), 1994.
[118] Xin, L., Li, Z., Gui, X., Fu, X., Fan, M., Wang, J., & Wang, H. (2020). Surface intrusion event identification for subway tunnels using ultra-weak FBG array based fiber sensing. Optics Express, 28(5), 6794-6805.
[119] Liu, S., Yu, F., Xu, W., Liu, H., Shum, P., Vai, M. I., & Shao, L. (2021, Oct. 24). Direct Demodulation of Differential Phase from Φ-OTDR using Self-Homodyne Phase Diversity Receiver Asia Communications and Photonics Conference (ACP). Shanghai, China.
[120] Wang, X., Lu, B., Wang, Z., Zheng, H., Liang, J., Li, L., Ye, Q., Qu, R., & Cai, H. (2018). Interference-fading-free Φ-OTDR based on differential phase shift pulsing technology. IEEE Photonics Technology Letters, 31(1), 39-42.
[121] Bahabad, A. (2014). Diffraction from a moving grating. Optical and Quantum Electronics, 46(8), 1065-1077.
[122] Saleh, B. E. A., & Teich, M. C. (2007). Fundamentals of Photonics (3rd ed.). Wiley.
[123] Schreiber, H., & Bruning, J. H. (2007). Phase Shifting Interferometry. In Optical Shop Testing (pp. 547-666). Wiley.
[124] Mecozzi, A., Cantono, M., Castellanos, J. C., Kamalov, V., Muller, R., & Zhan, Z. (2021). Polarization sensing using submarine optical cables. Optica, 8(6), 788-795.
[125] Wang, F., Liu, Y., Wei, T., Zhang, Y., Ji, W., Zong, M., & Zhang, X. (2019). Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach. Optics Express, 27(15), 20468-20478.
[126] Bakhtiari Gorajoobi, S., Masoudi, A., & Brambilla, G. (2022). Polarization fading mitigation in distributed acoustic sensors based on a high-speed polarization rotator. Optics Letters, 47(5), 1283-1286.
[127] Bai, Y.-X., Lin, T.-T., & Zhong, Z.-C. (2021). Orthogonal Imbalance Compensation Method of Φ-OTDR System Based on RLS Algorithm. IEEE Sensors Journal, 21(22), 25730-25735.
[128] Watkins, L. R., & Collett, M. J. (2014). Ellipse fitting for interferometry. Part 2: experimental realization. Applied Optics, 53(32), 7697-7703.
[129] Flores, V. H., & Rivera, M. (2020). Robust two-step phase estimation using the Simplified Lissajous Ellipse Fitting method with Gabor Filters Bank preprocessing. Optics Communications, 461, 125286.
[130] Liu, F., Wu, Y., & Wu, F. (2015). Correction of phase extraction error in phase-shifting interferometry based on Lissajous figure and ellipse fitting technology. Optics Express, 23(8), 10794-10807.
[131] Zinsou, R., Wang, Y., Zou, J., Liu, X., Wang, Y., & Jin, B. (2019). Coherent optical pulse phase rotation reflectometry insensitive to I/Q quadrature imbalance. IEEE Sensors Journal, 20(3), 1336-1342.
[132] Dennis, J. E. J. (1977). Nonlinear Least-Squares. In D. Jacobs (Ed.), State of the Art in Numerical Analysis (pp. 269–312). Academic Press.
[133] Coleman, T. F., & Li, Y. (1996). An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization, 6(2), 418-445.
[134] Zhong, X., Zhang, C., Li, L., Liang, S., Li, Q., Lü, Q., Ding, X., & Cao, Q. (2014). Influences of laser source on phase-sensitivity optical time-domain reflectometer-based distributed intrusion sensor. Applied Optics, 53(21), 4645-4650.
[135] Zhang, L., Chen, L., & Bao, X. (2020). Unveiling delay-time-resolved phase noise statistics of narrow-linewidth laser via coherent optical time domain reflectometry. Optics Express, 28(5), 6719-6733.
[136] Li, J., Zhang, Z., Gan, J., Zhang, Z., Heng, X., Zhou, K., Zhao, H., Xu, S., & Yang, Z. (2019). Influence of laser linewidth on phase-OTDR system based on heterodyne detection. Journal of Lightwave Technology, 37(11), 2641-2647.
[137] Yuan, Q., Wang, F., Liu, T., Zhang, Y., & Zhang, X. (2018). Using an auxiliary Mach–Zehnder interferometer to compensate for the influence of laser-frequency-drift in Φ-OTDR. IEEE Photonics Journal, 11(1), 1-9.
[138] Yuan, Q., Wang, F., Liu, T., Liu, Y., Zhang, Y., Zhong, Z., & Zhang, X. (2019). Compensating for influence of laser-frequency-drift in phase-sensitive OTDR with twice differential method. Optics Express, 27(3), 3664-3671.
[139] Wang, D., Zou, J., Wang, Y., Jin, B., Bai, Q., Liu, X., & Liu, Y. (2020). Distributed optical fiber low-frequency vibration detecting using cross-correlation spectrum analysis. Journal of Lightwave Technology, 38(23), 6664-6670.
[140] Wang, Y., Lu, P., Mihailov, S., Chen, L., & Bao, X. (2021). Ultra-low frequency dynamic strain detection with laser frequency drifting compensation based on a random fiber grating array. Optics Letters, 46(4), 789-792.
[141] Liu, C., Deng, Z., Wang, Y., Jiang, J., Qiu, Z., & Wang, Z. (2022). Golay Coding Φ-OTDR With Distributed Frequency-Drift Compensation. IEEE Sensors Journal, 22(13), 12894-12899.
[142] Zabihi, M., & Krebber, K. (2022). Laser source frequency drift compensation in Φ-OTDR systems using multiple probe frequencies. Optics Express, 30(11), 19990-19998.
[143] Deriushkina, E., Rebolledo-Salgado, I., Mazur, M., Torres-Company, V., Andrekson, P., Schröder, J., & Karlsson, M. (2022). Dual-Comb Swept-Wavelength Interferometry: Theory and Experiment. Journal of Lightwave Technology, 40(19), 6508-6516.
[144] Hilweg, C., Shadmany, D., Walther, P., Mavalvala, N., & Sudhir, V. (2022). Limits and prospects for long-baseline optical fiber interferometry. Optica, 9(11), 1238-1252.
[145] Chen, W., Ma, X., Ma, Q., & Wen, J. (2020). Denoising method of the Φ-OTDR system based on EMD-PCC. IEEE Sensors Journal, 21(10), 12113-12118.
[146] Wang, P., Lv, Y., Wang, Y., Liu, X., Bai, Q., Zhang, H., & Jin, B. (2020). Adaptability and anti-noise capacity enhancement for ϕ-OTDR with deep learning. Journal of Lightwave Technology, 38(23), 6699-6706.
[147] Bai, Y.-X., Lin, T.-T., & Zhong, Z.-C. (2021). Noise reduction method of Φ-OTDR system based on EMD-TFPF algorithm. IEEE Sensors Journal, 21(21), 24084-24089.
[148] Jiang, F., Zhang, Z., Lu, Z., Li, H., Tian, Y., Zhang, Y., & Zhang, X. (2021). High-fidelity acoustic signal enhancement for phase-OTDR using supervised learning. Optics Express, 29(21), 33467-33480.
[149] Ma, Q., Gao, X., Gao, Y., Zhang, X., & Zhong, Z. (2021). A study on noise reduction of Φ-OTDR system based on VSS-NLMS algorithm. IEEE Sensors Journal, 21(6), 7648-7656.
[150] Shang, Y., Yang, J., Chen, W., Yi, J., Sun, M., Du, Y., Huang, S., Zhao, W., Qu, S., & Wang, W. (2023). Speech signal enhancement based on deep learning in distributed acoustic sensing. Optics Express, 31(3), 4067-4079.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/583043
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Liu SQ. Research on Rayleigh-Scattering-based Distributed Optical Fiber Vibration Sensing Systems[D]. 澳门. 澳门大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11853004-刘帅旗-电子与电气工程(10720KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘帅旗]的文章
百度学术
百度学术中相似的文章
[刘帅旗]的文章
必应学术
必应学术中相似的文章
[刘帅旗]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。