中文版 | English
题名

地下水流与微生物堵塞及运移过程的多尺度耦合反馈研究

其他题名
MULTI-SCALE FEEDBACK COUPLING OF SUBSURFACE FLOW AND MICROBIAL CLOGGING AND TRANSPORT PROCESSES
姓名
姓名拼音
KE Dongfang
学号
11749301
学位类型
博士
学位专业
0830 环境科学与工程
学科门类/专业学位类别
08 工学
导师
刘崇炫
导师单位
环境科学与工程学院
论文答辩日期
2022-10
论文提交日期
2023-11-17
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

多孔介质中水流的流动与微生物的生长、堵塞、运移及其介导的反应等过程对地下环境中污染物的迁移转化以及碳、氮等元素的生物地球化学循环起着重要作用。然而,这些动态过程在不同尺度上的复杂耦合反馈作用限制了我们对其的理解与认识。同时,这些过程中普遍存在的尺度效应也限制了现有相关参数、模型与理论在更大尺度研究中的适用性。因此,本文旨在研究上述多尺度耦合反馈过程中亟待解决的四个科学问题,以完善现有的水文-生物地球化学模型和理论体系。
为解决生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 生物地球化学反应速率的尺度 转换 问题, 本文 首先利用有效参数方法推导了宏观有效反应速率与平均反应速率之比的表达式。通过估算该比值,即可在更大尺度的研究中根据平均浓度反推宏观有效反应速率。因此本文归纳了可能影响该比值的因素,并在耦合模型中分类讨论了不同因素对该比值的影响。研究表明,底物来源是影响生物地球化学反应速率尺度提升的关键因素之一。当底物中电子供体与电子受体来源相同时,流速、介质非均质性、底物浓度比以及运移延迟等其它因素对有效速率估算的影响较小,偏差在50%以内。相对于野外尺度与实验尺度反应速率间通常观测到的几个数量级的偏差,该偏差较小,意味着该场景下根据平均浓度计算的平均反应速率可近似为宏观有效反应速率;而当底物来源不同时,平均反应速率通常会高估宏观有效速率,且高估的程度通常随着流速的增加而降低。对有效参数的分解表明,底物与微生物分布的均质性以及正相关性是生物地球化学反应的尺度效应减弱的关键因素。
针对介质非均质性的演变问题以及生物堵塞模型的尺度提升问题,本文建立耦合了流动与多种微生物过程的模型以讨论微生物的多尺度分布,并依此分析了多孔介质的局部和全局尺度渗透系数的变化,进而研究了多孔介质多尺度非均质性的演变。研究结果表明,多孔介质非均的 多孔介质非均的 多孔介质非均的 多孔介质非均的 多孔介质非均的 多孔介质非均的 多孔介质非均的 多孔介质非均的 演变 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 受到流动的强烈影响。 具体而言,流动及其带来的底物供应会削弱多孔介质在垂直水流方向上的局部非均质性(局部渗透系数分布的对数标准差σlgK在设置的流速区间内的下降幅度可高达33%),而流动引起的微生物剪切过程的作用则相反(σlgK的增幅可达6%)。同时,还分析了多孔介质的局部和全局尺度孔隙度变化,并将其与渗透系数的变化进行比较,进而探讨了生物堵塞模型在不同尺度上的差异。结果表明,流动对生物堵塞模型的尺度提升也有显著影响:更高的流速及其带来的充足底物供应可以缩小局部尺度和全局尺度生物堵塞模型之间的差异,且流动引起的剪切作用也会削弱生物堵塞模型的尺度效应。
为构建跨尺度的微生物运移模型,本文收集了420组不同尺度(5mm-6.8m)的微生物运移实验数据,包括微生物的穿透曲线和相应的实验条件。然后,用非线性优化方法将微生物运移的过程模型与穿透曲线进行拟合以得到统一的模型参数。将这些模型参数作为目标变量,并将对应的实验条件作为特征变量,构建微生物运移数据库,并使用人工神经网络获取它们之间的定量关系。最后,将人工神经网络与过程模型耦合,建立了一个跨尺度的统一参数模型。测试结果显示,该模型与相关物理机理基本自洽,可模拟不同尺度下和复杂条件下微生物的运移。
综上,本文以数值模拟和数学推导为主要手段,研究了非均质介质中流动与各种微生物过程的耦合反馈机制,并探索了相关参数、模型与理论的尺度转换。研究结果为水文-生物地球化学模型的理论发展和实际应用提供了支持,推动了有害物质迁移转化及碳氮元素循环研究的发展。

其他摘要

Flow and microbial growth, clogging and transport processes in subsurface environment can strongly influence the biogeochemical cycling of elements such as carbon and nitrogen, as well as the transport and transformation of various pollutants. However, it is still difficult to understand these dynamic processes because of the coupling feedback of the above processes at different scales. At the same time, the scale effects prevalent in these processes also limit the applicability of existing relevant parameters, models and theories to larger scale studies. Therefore, four critical problems in these processes are studied to improve the existing hydrologic-biogeochemical models and theoretical systems.
To investigate the scaling of biogeochemical reaction rates, an expression for the ratio of the effective reaction rate to the average reaction rate (based on the average concentration), or the ratio of the effective rate parameter to the intrinsic rate parameter was first derived using the effective parameter approach. By estimating the value of this expression, it is possible to invert the macroscopic effective reaction rate based on the average concentrations of microorganisms and substrates in larger-scale studies or applications. The main factors that may affect this expression were then summarized, and the variations of effective rates or effective parameters under different factors were discussed categorically in a model coupling flow and several microbial processes. The results show that the substrate source is one of the most critical factors affecting the scale effect of biogeochemical reaction rates, and that when the sources of electron donors and electron acceptors are the same, variations in flow rate, porous medium heterogeneity, substrate concentration ratio, and retardation factors have little effect on the estimation of effective rates, with the maximum deviation between the average and effective reaction rates being within 50%. The deviations caused by these factors are negligible compared to the several orders of magnitude differences typically observed between field-scale and experimental-scale reaction rates, which means that the average reaction rates calculated according to the average concentration in these scenarios can be approximated to the macroscopic effective reaction rates. However, when the substrate sources are different, the overestimation of the macroscopic effective rate by the mean-field rate usually decreases with increasing flow velocity in scenarios with different substrate sources. In addition, decomposition of effective parameters shows that the homogeneous distribution of substrates and microorganisms, as well as their positive spatial correlation with each other can weaken the scaling effect of biogeochemical reactions.
Aiming at the evolution of heterogeneous media and the upscaling of bioclogging models, a model coupling flow and multiple microbial processes was established to discuss the multi-scale distribution of microorganisms. The changes of hydraulic conductivity at local/global scale were analyzed accordingly, and the evolution of multi-scale heterogeneity of porous media was further studied. The results show that the evolution of multi-scale heterogeneity of porous media in the subsurface environment is mainly influenced by the flow of subsurface water. Specifically, flow and the resulting substrate supply will decrease the local heterogeneity of the porous media in the vertical flow direction (the standard deviation of the local logarithmic hydraulic conductivity σlgK decreases by up to 33% in the set flow interval), while the flow-induced shearing stress has the opposite effect on the local heterogeneity (σlgK increases by up to 6% in the set flow rate interval). At the same time, the variation of porosity at local and global scales was analyzed, and was compared with the variation of hydraulic conductivity, thus exploring the differences of bioclogging model at different scales. The results show that flow also has a significant effect on the upscaling of bioclogging model. Specifically, higher flow velocity and the resulting adequate substrate supply will reduce the deviation between the local-scale bioclogging model and the global-scale bioclogging model, and the flow-induced shearing stress will also weaken the scale effect of the bioclogging model.
To construct a cross-scale microbial transport model, exhaustive search of literature was conducted, rendering 420 sets of experimental data of microbial transport at different scales (5mm to 6.8m), including the breakthrough curve of microbial transport and the corresponding experimental conditions. Sparse nonlinear optimization method was used to fit the process-based model to the breakthrough curve of microbial transport, and then a set of unified model parameters related to the attachment/detachment and straining/liberation processes of suspended microorganisms were obtained. Taking these unified model parameters as target variables and the corresponding experimental conditions from the literature as training variables, a database of microbial transport was established, followed by training an artificial neural network to obtain a quantitative relationship between them. Finally, an artificial neural network was coupled into the process-based model to construct a cross-scale unified parameter model. The testing results of this coupled model show that the model behaves in a largely self-consistent manner with the relevant physical mechanisms and can be used to simulate microbial transport under complex conditions.
In summary, the coupling feedback mechanism between flow and various microbial processes in heterogeneous media is studied by means of numerical simulation and mathematical derivation, and the scale transformation of relevant parameters, models and theories is explored. The results of this study provide support for the theoretical development and practical application of hydro-biogeochemical models, and promote the development of the migration and transformation of harmful substances and the cycle of carbon and nitrogen elements.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2023-09
参考文献列表

[1] LIU Y, LIU C, NELSON W C, et al. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns[J]. Environmental Science & Technology, 2017, 51(9): 4877-4886.
[2] BOANO F, HARVEY J W, MARION A, et al. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications[J]. Reviews of Geophysics, 2014, 52(4): 603-679.
[3] YANG C, ZHANG Y-K, LIU Y, et al. Model-Based Analysis of the Effects of Dam-Induced River Water and Groundwater Interactions on Hydro-Biogeochemical Transformation of Redox Sensitive Contaminants in a Hyporheic Zone[J]. Water Resources Research, 2018, 54(9): 5973-5985.
[4] POLIZZOTTO M L, KOCAR B D, BENNER S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Nature, 2008, 454(7203): 505-U505.
[5] HUNT R J, KRABBENHOFT D P, ANDERSON M P. Assessing hydrogeochemical heterogeneity in natural and constructed wetlands[J]. Biogeochemistry, 1997, 39(3): 271-293.
[6] NEUMANN R B, ASHFAQUE K N, BADRUZZAMAN A B M, et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh[J]. Nature Geoscience, 2010, 3(1): 46-52.
[7] VANDEVIVERE P, BAVEYE P. Saturated Hydraulic Conductivity Reduction Caused by Aerobic Bacteria in Sand Columns[J]. Soil Science Society of America Journal, 1992, 56(1): 1-13.
[8] BAVEYE P, VANDEVIVERE P, HOYLE B L, et al. Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(2): 123-191.
[9] THULLNER M. Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems[J]. Ecological Engineering, 2010, 36(2): 176-196.
[10] BROVELLI A, MALAGUERRA F, BARRY D A. Bioclogging in porous media: Model development and sensitivity to initial conditions[J]. Environmental Modelling & Software, 2009, 24(5): 611-626.
[11] DUPIN H J, MCCARTY P L. Impact of colony morphologies and disinfection on biological clogging in porous media[J]. Environmental Science & Technology, 2000, 34(8): 1513-1520.
[12] JUNG H, MEILE C. Upscaling of microbially driven first-order reactions in heterogeneous porous media[J]. Journal of Contaminant Hydrology, 2019, 224: 103483.
[13] YAN Z, LIU C, LIU Y, et al. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates[J]. Water Resources Research, 2017, 53(11): 8698-8714.
[14] DING D, BENSON D A. Simulating biodegradation under mixing-limited conditions using Michaelis–Menten (Monod) kinetic expressions in a particle tracking model[J]. Advances in Water Resources, 2015, 76: 109-119.
[15] CHAPELLE F H, LOVLEY D R. Rates of Microbial Metabolism in Deep Coastal Plain Aquifers[J]. Applied and Environmental Microbiology, 1990, 56(6): 1865-1874.
[16] HARMS H, BOSMA T N P. Mass transfer limitation of microbial growth and pollutant degradation[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18(2-3): 97-105.
[17] LOPEZ-PEñA L A, MEULENBROEK B, VERMOLEN F. Conditions for upscalability of bioclogging in pore network models[J]. Computational Geosciences, 2018, 22(6): 1543-1559.
[18] BACHOFEN R, FERLONI P, FLYNN I. Microorganisms in the subsurface[J]. Microbiological Research, 1998, 153(1): 1-22.
[19] PERUJO N, ROMANI A M, SANCHEZ-VILA X. A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics[J]. Science of the Total Environment, 2019, 669: 559-569.
[20] HORN H, LACKNER S. Modeling of biofilm systems: a review[J]. Advances in Biochemical Engineering/Biotechnology, 2014, 146: 53-76.
[21] COSTERTON J W, LEWANDOWSKI Z, CALDWELL D E, et al. MICROBIAL BIOFILMS[J]. Annual Review of Microbiology, 1995, 49(1): 711-745.
[22] BARAI P, KUMAR A, MUKHERJEE P P. Modeling of Mesoscale Variability in Biofilm Shear Behavior[J]. PLoS One, 2016, 11(11): e0165593.
[23] HARVEY R W, SMITH R L, GEORGE L. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer[J]. Applied and Environmental Microbiology, 1984, 48(6): 1197-1202.
[24] GODSY E M, GOERLITZ D F, GRBIC-GALIC D. Methanogenic Biodégradation of Creosote Contaminants in Natural and Simulated Ground-Water Ecosystems[J]. Groundwater, 1992, 30(2): 232-242.
[25] ALBRECHTSEN H J R. Distribution of bacteria, estimated by a viable count method, and heterotrophic activity in different size fractions of aquifer sediment[J]. Geomicrobiology Journal, 1994, 12(4): 253-264.
[26] MURPHY E M, GINN T R. Modeling microbial processes in porous media[J]. Hydrogeology Journal, 2000, 8(1): 142-158.
[27] MARZADRI A, TONINA D, BELLIN A. Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: Application to gravel bed rivers with alternate-bar morphology[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G3)
[28] ZARNETSKE J P, HAGGERTY R, WONDZELL S M, et al. Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones[J]. Water Resources Research, 2012, 48(11)
[29] GHARASOO M, CENTLER F, VAN CAPPELLEN P, et al. Kinetics of Substrate Biodegradation under the Cumulative Effects of Bioavailability and Self-Inhibition[J]. Environmental Science & Technology, 2015, 49(9): 5529-5537.
[30] BEST J B. The inference of intracellular enzymatic properties from kinetic data obtained on living cells. I. Some kinetic considerations regarding an enzyme enclosed by a diffusion barrier[J]. Journal of Cellular and Comparative Physiology, 1955, 46(1): 1-27.
[31] CONTOIS D E. Kinetics of microbial growth: theory and applications[M]. University of California, Los Angeles, 1957.
[32] CONTOIS, D. E. Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures[J]. Journal of General Microbiology, 1959, 21(1): 40-50.
[33] MOLZ F J, WIDDOWSON M A, BENEFIELD L D. Simulation of Microbial Growth Dynamics Coupled to Nutrient and Oxygen Transport in Porous Media[J]. Water Resources Research, 1986, 22(8): 1207-1216.
[34] RITTMANN B E, MCCARTY P L. Model of steady-state-biofilm kinetics[J]. Biotechnology and Bioengineering, 1980, 22(11): 2343-2357.
[35] HAYES C S, KOSKINIEMI S, RUHE Z C, et al. Mechanisms and biological roles of contact-dependent growth inhibition systems[J]. Cold Spring Harb Perspect Med, 2014, 4(2)
[36] KE D, LI R, LIU C. The feedback interaction between biomass accumulation and heterogeneous flow in porous media: Effect of shear stresses[J]. Journal of Hydrology, 2021, 597: 126083.
[37] GALBAN C J, LOCKE B R. Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold[J]. Biotechnology and Bioengineering, 1999, 65(2): 121-132.
[38] GUJER W, HENZE M, MINO T, et al. The Activated Sludge Model No. 2: biological phosphorus removal[J]. Water Science and Technology, 1995,31(2): 1-11.
[39] GANG H Z, LIU M T, MU B Z. Modeling of microorganisms transport in a cylindrical pore[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(6): 495-500.
[40] LEVENSPIEL O. The monod equation: A revisit and a generalization to product inhibition situations[J]. Biotechnology and Bioengineering, 1980, 22(8): 1671-1687.
[41] BAJRACHARYA B M, LU C, CIRPKA O A. Modeling substrate-bacteria-grazer interactions coupled to substrate transport in groundwater[J]. Water Resources Research, 2014, 50(5): 4149-4162.
[42] BRADFORD S A, WANG Y, KIM H, et al. Modeling microorganism transport and survival in the subsurface[J]. Journal of Environment Quality, 2014, 43(2): 421-440.
[43] XIAN Y, JIN M, ZHAN H, et al. Reactive Transport of Nutrients and Bioclogging During Dynamic Disconnection Process of Stream and Groundwater[J]. Water Resources Research, 2019
[44] SAMSO R, GARCIA J, MOLLE P, et al. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to Constructed Wetlands[J]. Journal of Environmental Management, 2016, 165: 271-279.
[45] CAPDEVILLE B, BELKHADIR R, ROQUES H. Etude descriptive fondamentale et modelisation de la croissance d'un film biologique—II. Nouveau concept de modelisation de la croissance d'un film biologique[J]. Water Research, 1988, 22(1): 71-77.
[46] ZYSSET A, STAUFFER F, DRACOS T. Modeling of reactive groundwater transport governed by biodegradation[J]. Water Resources Research, 1994, 30(8): 2423-2434.
[47] GORDEEVA Y L, BORODKIN A G, GORDEEVA E L, et al. Mathematical Modeling of the Fermentation Process for Lactic Acid Production: A Generalized Model[J]. Theoretical Foundations of Chemical Engineering, 2019, 53(1): 43-50.
[48] KILDSGAARD J, ENGESGAARD P. Numerical analysis of biological clogging in two-dimensional sand box experiments[J]. Journal of Contaminant Hydrology, 2001, 50(3): 261-285.
[49] ZHU Q, WEN Z, LIU H. Microbial effects on hydraulic conductivity estimation by single-well injection tests in a petroleum-contaminated aquifer[J]. Journal of Hydrology, 2019, 573: 352-364.
[50] SEMENOV A V, OVERBEEK L V, BRUGGEN A H C V. Percolation and Survival of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in Soil Amended with Contaminated Dairy Manure or Slurry[J]. Applied and Environmental Microbiology, 2009, 75(10): 3206-3215.
[51] AKHAVAN M, IMHOFF P T, ANDRES A S, et al. Model evaluation of denitrification under rapid infiltration basin systems[J]. Journal of Contaminant Hydrology, 2013, 152: 18-34.
[52] BERLIN M, SURESH KUMAR G, NAMBI I M. Numerical modeling of biological clogging on transport of nitrate in an unsaturated porous media[J]. Environmental Earth Sciences, 2015, 73(7): 3285-3298.
[53] KINDRED J S, CELIA M A. Contaminant transport and biodegradation: 2. Conceptual model and test simulations[J]. Water Resources Research, 1989, 25(6): 1149-1159.
[54] LEE M-S, LEE K-K, HYUN Y, et al. Nitrogen transformation and transport modeling in groundwater aquifers[J]. Ecological Modelling, 2006, 192(1-2): 143-159.
[55] MACQUARRIE K T B, SUDICKY E A. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: I. Model formulation and performance[J]. Journal of Contaminant Hydrology, 2001, 47(1): 53-84.
[56] ESSAID H I, BEKINS B A, GODSY E M, et al. Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site[J]. Water Resources Research, 1995, 31(12): 3309-3327.
[57] HEIJNEN J J, VAN DIJKEN J P. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms[J]. Biotechnology and Bioengineering, 1992, 39(8): 833-858.
[58] RITTMANN B E, MCCARTY P L. Environmental Biotechnology: Principles and Applications[M]. Boston: McGraw-Hill, 2001.
[59] THULLNER M, REGNIER P, VAN CAPPELLEN P. Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions[J]. Geomicrobiology Journal, 2007, 24(3-4): 139-155.
[60] HOWELL J M, COYNE M S, CORNELIUS P L. Effect of Sediment Particle Size and Temperature on Fecal Bacteria Mortality Rates and the Fecal Coliform/Fecal Streptococci Ratio[J]. Journal of Environmental Quality, 1996, 25(6): 1216-1220.
[61] JAMIESON R C, JOY D M, LEE H, et al. Persistence of enteric bacteria in alluvial streams[J]. Journal of Environmental Engineering and Science, 2004, 3(3): 203-212.
[62] JAMIESON R C, JOY D M, LEE H, et al. Resuspension of Sediment-Associated Escherichia coli in a Natural Stream[J]. Journal of Environmental Quality, 2005, 34(2): 581-589.
[63] CHAMBLESS J D, STEWART P S. A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms[J]. Biotechnology and Bioengineering, 2007, 97(6): 1573-1584.
[64] RITTMAN B E. The effect of shear stress on biofilm loss rate[J]. Biotechnology and Bioengineering, 1982, 24(2): 501-506.
[65] SUDICKY E A, CHERRY J A. Field Observations of Tracer Dispersion Under Natural Flow Conditions in an Unconfined Sandy Aquifer[J]. Water Quality Research Journal, 1979, 14(1): 1-18.
[66] GELHAR L W, AXNESS C L. Three-dimensional stochastic analysis of macrodispersion in aquifers[J]. Water Resources Research, 1983, 19(1): 161-180.
[67] ANDERSON M P, CHERRY J A. Using models to simulate the movement of contaminants through groundwater flow systems[J]. C R C Critical Reviews in Environmental Control, 1979, 9(2): 97-156.
[68] GELHAR L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resources Research, 1986, 22(9S): 135S-145S.
[69] WHITE A F, BRANTLEY S L. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?[J]. Chemical Geology, 2003, 202(3-4): 479-506.
[70] BAO C, WU H, LI L, et al. Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado[J]. Environmental Science & Technology, 2014, 48(17): 10116-10127.
[71] LIU C, ZACHARA J M, QAFOKU N P, et al. Scale-dependent desorption of uranium from contaminated subsurface sediments[J]. Water Resources Research, 2008, 44(8)
[72] LIU C, SHANG J, KERISIT S, et al. Scale-dependent rates of uranyl surface complexation reaction in sediments[J]. Geochimica et Cosmochimica Acta, 2013, 105: 326-341.
[73] LIU C X, SHI Z Q, ZACHARA J M. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation[J]. Environmental Science & Technology, 2009, 43(17): 6560-6566.
[74] LIU C, SHANG J, SHAN H, et al. Effect of subgrid heterogeneity on scaling geochemical and biogeochemical reactions: a case of U(VI) desorption[J]. Environmental Science & Technology, 2014, 48(3): 1745-1752.
[75] KERISIT S, LIU C X. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 4937-4952.
[76] LIU C, LIU Y, KERISIT S, et al. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 191-216.
[77] MEILE C, TUNCAY K. Scale dependence of reaction rates in porous media[J]. Advances in Water Resources, 2006, 29(1): 62-71.
[78] JUNG H, NAVARRE-SITCHLER A. Physical heterogeneity control on effective mineral dissolution rates[J]. Geochimica et Cosmochimica Acta, 2018, 227: 246-263.
[79] JUNG H, NAVARRE-SITCHLER A. Scale effect on the time dependence of mineral dissolution rates in physically heterogeneous porous media[J]. Geochimica et Cosmochimica Acta, 2018, 234: 70-83.
[80] WHITAKER S. Diffusion and Heterogeneous Reaction in Porous Media[M]//WHITAKER S. The Method of Volume Averaging. Dordrecht; Springer Netherlands. 1999: 1-71.
[81] HORNUNG U. Miscible Displacement[M]//HORNUNG U. Homogenization and Porous Media. New York, NY; Springer New York. 1997: 129-146.
[82] BRENNER H, STEWARTSON K. Dispersion resulting from flow through spatially periodic porous media[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1980, 297(1430): 81-133.
[83] MOORE O W, CURTI L, WOULDS C, et al. Long-term organic carbon preservation enhanced by iron and manganese[J]. Nature, 2023
[84] BRADLEY J A, AMEND J P, LAROWE D E. Necromass as a Limited Source of Energy for Microorganisms in Marine Sediments[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(2): 577-590.
[85] THULLNER M, DALE A W, REGNIER P. Global-scale quantification of mineralization pathways in marine sediments: A reaction-transport modeling approach[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10)
[86] LI R, YANG C, KE D, et al. The scaling of mineral dissolution rates under complex flow conditions[J]. Geochimica et Cosmochimica Acta, 2020, 274: 63-78.
[87] RAJE D S, KAPOOR V. Experimental Study of Bimolecular Reaction Kinetics in Porous Media[J]. Environmental Science & Technology, 2000, 34(7): 1234-1239.
[88] MASSOUDIEH A, DENTZ M. Upscaling non-linear reactive transport in correlated velocity fields[J]. Advances in Water Resources, 2020, 143
[89] DENTZ M, LE BORGNE T, ENGLERT A, et al. Mixing, spreading and reaction in heterogeneous media: a brief review[J]. Journal of Contaminant Hydrology, 2011, 120-121: 1-17.
[90] WOOD B D, RADAKOVICH K, GOLFIER F. Effective reaction at a fluid–solid interface: Applications to biotransformation in porous media[J]. Advances in Water Resources, 2007, 30(6-7): 1630-1647.
[91] WEN H, LI L. An upscaled rate law for magnesite dissolution in heterogeneous porous media[J]. Geochimica et Cosmochimica Acta, 2017, 210: 289-305.
[92] CHAKRAWAL A, HERRMANN A M, KOESTEL J, et al. Dynamic upscaling of decomposition kinetics for carbon cycling models[J]. Geoscientific Model Development, 2020, 13(3): 1399-1429.
[93] XIA L, ZHENG X L, SHAO H B, et al. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns[J]. Journal of Hydrology, 2016, 535: 293-300.
[94] WU J, WANG X-B, WANG H-F, et al. Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery[J]. RSC Advances, 2017, 7(59): 37382-37391.
[95] XIA L, YOU H C, LIU J H, et al. Characteristics and origin of clogging-functional bacteria during managed aquifer recharge: A laboratory study[J]. Journal of Environmental Management, 2022, 312
[96] ILIUTA I, ILIUTA M C, LARACHI F. Hydrodynamics modeling of bioclogging in waste gas treating trickle-bed bioreactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5044-5052.
[97] OKUBO T, MATSUMOTO J. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge[J]. Water Resources Research, 1979, 15(6): 1536-1542.
[98] KARRABI M, SéCHET P, MORRA C, et al. Investigation of hydrodynamic/biomass growth coupling in a pilot scale granular bioreactor at low pore Reynolds number[J]. Chemical Engineering Science, 2011, 66(8): 1765-1782.
[99] SEIFERT D, ENGESGAARD P. Sand box experiments with bioclogging of porous media: Hydraulic conductivity reductions[J]. Journal of Contaminant Hydrology, 2012, 136-137: 1-9.
[100] KONE T, GOLFIER F, ORGOGOZO L, et al. Impact of biofilm-induced heterogeneities on solute transport in porous media[J]. Water Resources Research, 2014, 50(11): 9103-9119.
[101] SEYMOUR J D, GAGE J P, CODD S L, et al. Magnetic resonance microscopy of biofouling induced scale dependent transport in porous media[J]. Advances in Water Resources, 2007, 30(6): 1408-1420.
[102] THULLNER M, ZEYER J, KINZELBACH W. Influence of Microbial Growth on Hydraulic Properties of Pore Networks[J]. Transport in Porous Media, 2002, 49(1): 99-122.
[103] OR D, SMETS B F, WRAITH J M, et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review[J]. Advances in Water Resources, 2007, 30(6-7): 1505-1527.
[104] KIM J W, CHOI H, PACHEPSKY Y A. Biofilm morphology as related to the porous media clogging[J]. Water Research, 2010, 44(4): 1193-1201.
[105] OSTVAR S, ILTIS G, DAVIT Y, et al. Investigating the influence of flow rate on biofilm growth in three dimensions using microimaging[J]. Advances in Water Resources, 2018, 117: 1-13.
[106] CARREL M, MORALES V L, DENTZ M, et al. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling[J]. Water Resources Research, 2018, 54(3): 2183-2198.
[107] AUFRECHT J A, FOWLKES J D, BIBLE A N, et al. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network[J]. PLoS One, 2019, 14(6): e0218316.
[108] DENG W, CARDENAS M B, KIRK M F, et al. Effect of permeable biofilm on micro- and macro-scale flow and transport in bioclogged pores[J]. Environmental Science & Technology, 2013, 47(19): 11092-11098.
[109] YAN Z, WANG T, WANG L, et al. Microscale water distribution and its effects on organic carbon decomposition in unsaturated soils[J]. Science of the Total Environment, 2018, 644: 1036-1043.
[110] ROSENZWEIG R, FURMAN A, SHAVIT U. A Channel Network Model as a Framework for Characterizing Variably Saturated Flow in Biofilm-Affected Soils[J]. Vadose Zone Journal, 2013, 12(2)
[111] CLEMENT T P, HOOKER B S, SKEEN R S. Macroscopic Models for Predicting Changes in Saturated Porous Media Properties Caused by Microbial Growth[J]. Groundwater, 1996, 34(5): 934-942.
[112] VANDEVIVERE P. Bacterial clogging of porous media: A new modelling approach[J]. Biofouling, 1995, 8(4): 281-291.
[113] TAYLOR S W, MILLY P C D, JAFFé P R. Biofilm growth and the related changes in the physical properties of a porous medium: 2. Permeability[J]. Water Resources Research, 1990, 26(9): 2161-2169.
[114] SEKI K, MIYAZAKI T. A mathematical model for biological clogging of uniform porous media[J]. Water Resources Research, 2001, 37(12): 2995-2999.
[115] IVES K J, PIENVICHITR V. Kinetics of the filtration of dilute suspensions[J]. Chemical Engineering Science, 1965, 20(11): 965-973.
[116] KOZENY J. Uber kapillare Leitung des Wassers im Boden[J]. Sitzber Akad Wiss Wein, Math-naturw, 1927, 136: Abt. II a, P. 271.
[117] CARMAN P C. Fluid flow through granular beds[J]. Trans Inst Chem Eng, 1937, 15: 150-166.
[118] BLAZEJEWSKI R, MURAT-BLAZEJEWSKA S. Soil clogging phenomena in constructed wetlands with subsurface flow[J]. Water Science and Technology, 1997, 35(5): 183-188.
[119] 邵川 , 周正伟 , 李俊 , 等. 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 [J]. 环 境工程学报 , 2017, 11(10): 7.
[120] 邵川 . 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 [D]. 南京大学 , 2017.
[121] CUNNINGHAM A B, CHARACKLIS W G, ABEDEEN F, et al. Influence of biofilm accumulation on porous media hydrodynamics[J]. Environmental Science & Technology, 1991, 25(7): 1305-1311.
[122] VANDEVIVERE P, BAVEYE P. Relationship between Transport of Bacteria and Their Clogging Efficiency in Sand Columns[J]. Applied and Environmental Microbiology, 1992, 58(8): 2523-2530.
[123] KAPELLOS G E, ALEXIOU T S, PAYATAKES A C. Hierarchical simulator of biofilm growth and dynamics in granular porous materials[J]. Advances in Water Resources, 2007, 30(6): 1648-1667.
[124] BRUNET J-P L, LI L, KARPYN Z T, et al. Fracture opening or self-sealing: Critical residence time as a unifying parameter for cement–CO2–brine interactions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 25-37.
[125] CARROLL S, CAREY J W, DZOMBAK D, et al. Review: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments[J]. International Journal of Greenhouse Gas Control, 2016, 49: 149-160.
[126] SOLER J M, MäDER U K. Interaction Between Hyperalkaline Fluids and Rocks Hosting Repositories for Radioactive Waste: Reactive Transport Simulations[J]. Nuclear Science and Engineering, 2005, 151(1): 128-133.
[127] HABERMAN B A, YOUNG J B. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell[J]. International Journal of Heat & Mass Transfer, 2004, 47(17-18): 3617-3629.
[128] CHAPMAN B H, JAMES R, JUNG R, et al. Modelling the transport of reacting chemical contaminants in natural streams[J]. Marine and Freshwater Research, 1982, 33: 617-628.
[129] SHUAI P, CARDENAS M B, KNAPPETT P S K, et al. Denitrification in the banks of fluctuating rivers: The effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow[J]. Water Resources Research, 2017, 53(9): 7951-7967.
[130] XU T, PRUESS K. Modeling Multiphase Non-isothermal Fluid Flow and Reactive Geochemical Transport in Variably Saturated Fractured Rocks: 1. Methodology[J]. American Journal of Science, 2001, 301(1): 16-33.
[131] GLASSLEY W E, NITAO J J, GRANT C W. Three-dimensional spatial variability of chemical properties around a monitored waste emplacement tunnel[J]. Journal of Contaminant Hydrology, 2003, 62-63: 495-507.
[132] LI L, PETERS C A, CELIA M A. Upscaling geochemical reaction rates using pore-scale network modeling[J]. Advances in Water Resources, 2006, 29(9): 1351-1370.
[133] LI L, MAHER K, NAVARRE-SITCHLER A, et al. Expanding the role of reactive transport models in critical zone processes[J]. Earth-Science Reviews, 2017, 165: 280-301.
[134] RAJABZADEH A R, LEGGE R L, WEBER K P. Multiphysics modelling of flow dynamics, biofilm development and wastewater treatment in a subsurface vertical flow constructed wetland mesocosm[J]. Ecological Engineering, 2015, 74: 107-116.
[135] NEWCOMER M E, HUBBARD S S, FLECKENSTEIN J H, et al. Simulating bioclogging effects on dynamic riverbed permeability and infiltration[J]. Water Resources Research, 2016, 52(4): 2883-2900.
[136] CARUSO A, BOANO F, RIDOLFI L, et al. Biofilm-induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure[J]. Geophysical Research Letters, 2017, 44(10): 4917-4925.
[137] NEWCOMER M E, HUBBARD S S, FLECKENSTEIN J H, et al. Influence of Hydrological Perturbations and Riverbed Sediment Characteristics on Hyporheic Zone Respiration of CO2 and N2[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(3): 902-922.
[138] EHLINGER F, AUDIC J M, VERRIER D, et al. The Influence of the Carbon Source on Microbiological Clogging in an Anaerobic Filter[J]. Water Science & Technology, 1987, 19(1): 261-273.
[139] SHARP R R, CUNNINGHAM A B, KOMLOS J, et al. Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects[J]. Water Science and Technology, 1999, 39(7): 195-201.
[140] STEWART T L, FOGLER H S. Biomass plug development and propagation in porous media[J]. Biotechnology and Bioengineering, 2001, 72(3): 353-363.
[141] KILDSGAARD J, ENGESGAARD P. Tracer Tests and Image Analysis of Biological Clogging in a Two-Dimensional Sandbox Experiment[J]. Ground Water Monitoring and Remediation, 2002, 22(2): 60-67.
[142] SEKI K, THULLNER M, HANADA J, et al. Moderate bioclogging leading to preferential flow paths in biobarriers[J]. Groundwater Monitoring and Remediation, 2006, 26(3): 68-76.
[143] RODRíGUEZ-ESCALES P, FOLCH A, VAN BREUKELEN B M, et al. Modeling long term Enhanced in situ Biodenitrification and induced heterogeneity in column experiments under different feeding strategies[J]. Journal of Hydrology, 2016, 538: 127-137.
[144] SEIFERT D, ENGESGAARD P. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media[J]. Journal of Contaminant Hydrology, 2007, 93(1-4): 58-71.
[145] BOTTERO S, STORCK T, HEIMOVAARA T J, et al. Biofilm development and the dynamics of preferential flow paths in porous media[J]. Biofouling, 2013, 29(9): 1069-1086.
[146] MASCIOPINTO C, LA MANTIA R, CHRYSIKOPOULOS C V. Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy[J]. Water Resources Research, 2008, 44(1)
[147] PANG L, CLOSE M, GOLTZ M, et al. Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages[J]. Environment International, 2004, 29(7): 907-921.
[148] PANG L. Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores[J]. Journal of Environment Quality, 2009, 38(4): 1531-1559.
[149] OUYANG Y, SHINDE D, MANSELL R S, et al. Colloid‐enhanced transport of chemicals in subsurface environments: A review[J]. Critical Reviews in Environmental Science and Technology, 1996, 26(2): 189-204.
[150] BAUMANN T. Colloid Transport Processes: Experimental Evidence from the Pore Scale to the Field Scale[J]. Springer Berlin Heidelberg, 2007
[151] HARVEY R W, GARABEDIAN S P. Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer[J]. Environmental Science & Technology, 1991, 25(1): 178-185.
[152] SCHIJVEN J F, HASSANIZADEH S M. Removal of Viruses by Soil Passage: Overview of Modeling, Processes, and Parameters[J]. Critical Reviews in Environmental Science and Technology, 2000, 30(1): 49-127.
[153] GINN T R, WOOD B D, NELSON K E, et al. Processes in microbial transport in the natural subsurface[J]. Advances in Water Resources, 2002,25(8): 1017-1042.
[154] BOLSTER C H, MILLS A L, HORNBERGER G M, et al. Spatial distribution of deposited bacteria following Miscible Displacement Experiments in intact cores[J]. Water Resources Research, 1999, 35(6): 1797-1807.
[155] REDMAN J A, GRANT S B, OLSON T M, et al. Pathogen Filtration, Heterogeneity, and the Potable Reuse of Wastewater[J]. Environmental Science & Technology, 2001, 35(9): 1798-1805.
[156] BRADFORD S A, SIMUNEK J, WALKER S L. Transport and straining of E. coli O157:H7 in saturated porous media[J]. Water Resources Research, 2006, 42(12)
[157] BRADFORD S A, YATES S R, BETTAHAR M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources Research, 2002, 38(12): 63-61-63-12.
[158] FOPPEN J W A, MPOROKOSO A, SCHIJVEN J F. Determining straining of Escherichia coli from breakthrough curves[J]. Journal of Contaminant Hydrology, 2005, 76(3): 191-210.
[159] MCDOWELL-BOYER L M, HUNT J R, SITAR N. Particle transport through porous media[J]. Water Resources Research, 1986, 22(13): 1901-1921.
[160] WAN J, TOKUNAGA T K, TSANG C-F. Bacterial Sedimentation Through a Porous Medium[J]. Water Resources Research, 1995, 31(7): 1627-1636.
[161] HARVEY R W, METGE D W, KINNER N, et al. Physiological Considerations in Applying Laboratory-Determined Buoyant Densities to Predictions of Bacterial and Protozoan Transport in Groundwater: Results of In-Situ and Laboratory Tests[J]. Environmental Science & Technology, 1997, 31(1): 289-295.
[162] LIU L, LIU G, ZHOU J, et al. Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media[J]. Environmental Science & Technology, 2021, 55(8): 5559-5568.
[163] TORKZABAN S, TAZEHKAND S S, WALKER S L, et al. Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry[J]. Water Resources Research, 2008, 44(4)
[164] RIJNAARTS H H M, NORDE W, BOUWER E J, et al. Reversibility and mechanism of bacterial adhesion[J]. Colloids and Surfaces B: Biointerfaces, 1995, 4(1): 5-22.
[165] REDMAN J A, WALKER S L, ELIMELECH M. Bacterial Adhesion and Transport in Porous Media: Role of the Secondary Energy Minimum[J]. Environmental Science & Technology, 2004, 38(6): 1777-1785.
[166] WALKER S L, REDMAN J A, ELIMELECH M. Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport[J]. Langmuir, 2004, 20(18): 7736-7746.
[167] RAJAGOPALAN R, TIEN C. Trajectory analysis of deep‐bed filtration with the sphere‐in‐cell porous media model[J]. AIChE Journal, 1976, 22(3): 523-533.
[168] NING Z, LI R, LIAN K, et al. Transport and retention of Shewanella oneidensis strain MR1 in water-saturated porous media with different grain-surface properties[J]. Chemosphere, 2019, 233: 57-66.
[169] BRADFORD S A, KIM H, HEADD B, et al. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts[J]. Environmental Science & Technology, 2016, 50(3): 1295-1303.
[170] KNAPPETT P S, DU J, LIU P, et al. Importance of Reversible Attachment in Predicting E. Coli Transport in Saturated Aquifers From Column Experiments[J]. Advances in Water Resources, 2014, 63: 120-130.
[171] MURPHY E M, GINN T R, CHILAKAPATI A, et al. The influence of physical heterogeneity on microbial degradation and distribution in porous media[J]. Water Resources Research, 1997, 33(5): 1087-1103.
[172] OSS C J V. Interfacial Forces in Aqueous Media, F, 1994 [C].
[173] ELIMELECH M, GREGORY J, JIA X, et al. CHAPTER 3 - Surface interaction potentials[M]//ELIMELECH M, GREGORY J, JIA X, et al. Particle Deposition and Aggregation. Butterworth-Heinemann. 1995: 33-67.
[174] LI X, XU H, GAO B, et al. Retention and Transport of PAH-Degrading Bacterium Herbaspirillum chlorophenolicum FA1 in Saturated Porous Media Under Various Physicochemical Conditions[J]. Water, Air, & Soil Pollution, 2017, 228(7)
[175] ZHANG W, WU S, QIN Y, et al. Deposition and mobilization of viruses in unsaturated porous media: Roles of different interfaces and straining[J]. Environmental Pollution, 2021, 270: 116072.
[176] BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media[J]. Environmental Science & Technology, 2003, 37(10): 2242-2250.
[177] TUFENKJI N, REDMAN J A, ELIMELECH M. Interpreting Deposition Patterns of Microbial Particles in Laboratory-Scale Column Experiments[J]. Environmental Science & Technology, 2003, 37(3): 616-623.
[178] SIM Y, CHRYSIKOPOULOS C V. One-Dimensional Virus Transport in Porous Media With Time-Dependent Inactivation Rate Coefficients[J]. Water Resources Research, 1996, 32(8): 2607-2611.
[179] BRADFORD S A, HEADD B, ARYE G, et al. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes[J]. Journal of Hydrology, 2015, 525: 760-768.
[180] YANG X, SUN H, YANG Y, et al. Recent progress in multi-scale modeling and simulation of flow and solute transport in porous media[J]. WIREs Water, 2021, 8(6): e1561.
[181] GOLDBERG E, SCHERINGER M, BUCHELI T D, et al. Prediction of nanoparticle transport behavior from physicochemical properties: machine learning provides insights to guide the next generation of transport models[J]. Environmental Science: Nano, 2015, 2(4): 352-360.
[182] YU J, ZHANG D, REN W, et al. Transport of Enterococcus faecalis in granular activated carbon column: Potential energy, migration, and release[J]. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110415.
[183] JAIN S, ARNEPALLI D N. Adhesion and Deadhesion of Ureolytic Bacteria on Sand under Variable Pore Fluid Chemistry[J]. Journal of Environmental Engineering, 2020, 146(6)
[184] KIM H N, BRADFORD S A, WALKER S L. Escherichia coli O157:H7 Transport in Saturated Porous Media: Role of Solution Chemistry and Surface Macromolecules[J]. Environmental Science & Technology, 2009, 43(12): 4340-4347.
[185] HONG Z N, JIANG J, LI J Y, et al. Adhesion mediated transport of bacterial pathogens in saturated sands coated by phyllosilicates and Al-oxides[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 215-225.
[186] LI X, JOHNSON W P. Nonmonotonic Variations in Deposition Rate Coefficients of Microspheres in Porous Media under Unfavorable Deposition Conditions[J]. Environmental Science & Technology, 2005, 39(6): 1658-1665.
[187] HILPERT M, JOHNSON W P. A Binomial Modeling Approach for Upscaling Colloid Transport Under Unfavorable Attachment Conditions: Emergent Prediction of Nonmonotonic Retention Profiles[J]. Water Resources Research, 2018, 54(1): 46-60.
[188] HILPERT M, RASMUSON A, JOHNSON W P. A binomial modeling approach for upscaling colloid transport under unfavorable conditions: Emergent prediction of extended tailing[J]. Water Resources Research, 2017, 53(7): 5626-5644.
[189] NING Z, LI R, LIAN H, et al. Effects of flow-interruption on the bacteria transport behavior in porous media[J]. Journal of Hydrology, 2020: 125677.
[190] 周志华 . 机器学习 机器学习 机器学习 机器学习 [M]. 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 , 2016.
[191] ALWOSHEEL A, VAN CRANENBURGH S, CHORUS C G. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis[J]. Journal of Choice Modelling, 2018, 28: 167-182.
[192] HORNIK K, STINCHCOMBE M, WHITE H. MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS[J]. Neural Networks, 1989, 2(5): 359-366.
[193] KŮRKOVá V. Kolmogorov's theorem and multilayer neural networks[J]. Neural Networks, 1992, 5(3): 501-506.
[194] GORMAN R P, SEJNOWSKI T J. Analysis of hidden units in a layered network trained to classify sonar targets[J]. Neural Networks, 1988, 1(1): 75-89.
[195] WEN H, LI L. An upscaled rate law for mineral dissolution in heterogeneous media: The role of time and length scales[J]. Geochimica et Cosmochimica Acta, 2018, 235: 1-20.
[196] ELOSEGUI A, POZO J. Epilithic biomass and metabolism in a north Iberian stream[J]. Aquatic Sciences, 1998, 60(1): 1-16.
[197] MAGID J, DE NEERGAARD A, BRANDT M. Heterogeneous distribution may substantially decrease initial decomposition, long-term microbial growth and N-immobilization from high C-to-N ratio resources[J]. European Journal of Soil Science, 2006, 57(4): 517-529.
[198] REMY N, BOUCHER A, WU J. Applied Geostatistics with SGeMS: A User's Guide[M]. Cambridge: Cambridge University Press, 2009.
[199] YAN Z, LIU C, TODD-BROWN K E, et al. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils[J]. Biogeochemistry, 2016, 131(1-2): 121-134.
[200] FRANZLUEBBERS A J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils[J]. Applied Soil Ecology, 1999, 11(1): 91-101.
[201] DAI Z, WOLFSBERG A, LU Z, et al. Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock[J]. Geophysical Research Letters, 2009, 36(1)
[202] SOLTANIAN M R, RITZI R, DAI Z, et al. Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales[J]. Stochastic Environmental Research and Risk Assessment, 2014, 29(3): 709-726.
[203] CHEN Y-M, ABRIOLA L M, ALVAREZ P J J, et al. Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparisons With experimental measurements[J]. Water Resources Research, 1992, 28(7): 1833-1847.
[204] HUBBARD C E, BARKER J F, VANDEGRIENDT M. Transport and fate of dissolved methanol, methyl-tertiary-butyl-ether, and monoaromatic hydrocarbons in a shallow sand aquifer Appendix H: laboratory biotransformation studies[R]. Washington, D.C.: American Petroleum Institute, 1994.
[205] WADDILL D W, WIDDOWSON M A. Three-dimensional model for subsurface transport and biodegradation[J]. Journal of Environmental Engineering, 1998, 124(4): 336-344.
[206] SCHAPER J L, POSSELT M, BOUCHEZ C, et al. Fate of Trace Organic Compounds in the Hyporheic Zone: Influence of Retardation, the Benthic Biolayer, and Organic Carbon[J]. Environmental Science & Technology, 2019, 53(8): 4224-4234.
[207] HENDRY M J, RANVILLE J R, BOLDT-LEPPIN B E J, et al. Geochemical and transport properties of dissolved organic carbon in a clay-rich aquitard[J]. Water Resources Research, 2003, 39(7)
[208] CUSSLER E. Diffusion[M]. Cambridge: Cambridge University Press, 1997.
[209] GU C, HORNBERGER G M, MILLS A L, et al. Nitrate reduction in streambed sediments: Effects of flow and biogeochemical kinetics[J]. Water Resources Research, 2007, 43(12)
[210] BU X, DAI H, YUAN S, et al. Model-based analysis of dissolved oxygen supply to aquifers within riparian zones during river level fluctuations: Dynamics and influencing factors[J]. Journal of Hydrology, 2021, 598: 126460.
[211] KABALA Z J. Sensitivity analysis of a pumping test on a well with wellbore storage and skin[J]. Advances in Water Resources, 2001, 24(5): 483-504.
[212] HUANG Y-C, YEH H-D. The use of sensitivity analysis in on-line aquifer parameter estimation[J]. Journal of Hydrology, 2007, 335(3): 406-418.
[213] GUPTA S, SRIVASTAVA P, PATIL S A, et al. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges[J]. Bioresource Technology, 2021, 320: 124376.
[214] ABU HASAN H, MUHAMMAD M H, ISMAIL N I. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources[J]. Journal of Water Process Engineering, 2020, 33: 101035.
[215] LI L, STEEFEL C I, KOWALSKY M B, et al. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado[J].Journal of Contaminant Hydrology, 2010, 112(1): 45-63.
[216] FAYBISHENKO B, HAZEN T C, LONG P E, et al. In Situ Long-Term Reductive Bioimmobilization of Cr(VI) in Groundwater Using Hydrogen Release Compound[J]. Environmental Science & Technology, 2008, 42(22): 8478-8485.
[217] LIU Y, LIU C, ZHANG C, et al. Pore and continuum scale study of the effect of subgrid transport heterogeneity on redox reaction rates[J]. Geochimica et Cosmochimica Acta, 2015, 163: 140-155.
[218] JANOT N, LEZAMA PACHECO J S, PHAM D Q, et al. Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry[J]. Environmental Science & Technology, 2016, 50(1): 46-53.
[219] FREEZE R A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media[J]. Water Resources Research, 1975, 11(5): 725-741.
[220] HOEKSEMA R J, KITANIDIS P K. Analysis of the Spatial Structure of Properties of Selected Aquifers[J]. Water Resources Research, 1985, 21(4): 563-572.
[221] FOGG G E. Groundwater Flow and Sand Body Interconnectedness in a Thick, Multiple-Aquifer System[J]. Water Resources Research, 1986, 22(5): 679-694.
[222] CONSTANTZ J. Heat as a tracer to determine streambed water exchanges[J]. Water Resources Research, 2008, 44(4)
[223] MOSLEY M P. Subsurface flow velocities through selected forest soils, South Island, New Zealand[J]. Journal of Hydrology, 1982, 55(1): 65-92.
[224] VOGT T, SCHNEIDER P, HAHN-WOERNLE L, et al. Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling[J]. Journal of Hydrology, 2010, 380(1-2): 154-164.
[225] TAYLOR S W, JAFFé P R. Biofilm growth and the related changes in the physical properties of a porous medium: 1. Experimental investigation[J]. Water Resources Research, 1990, 26(9): 2153-2159.
[226] YAVUZ CORAPCIOGLU M, HARIDAS A. Transport and fate of microorganisms in porous media: A theoretical investigation[J]. Journal of Hydrology, 1984, 72(1): 149-169.
[227] DESHPANDE P A, SHONNARD D R. Modeling the effects of systematic variation in ionic strength on the attachment kinetics of Pseudomonas fluorescens UPER-1 in saturated sand columns[J]. Water Resources Research, 1999, 35(5): 1619-1627.
[228] FOPPEN J W A, SCHIJVEN J F. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions[J]. Water Research, 2006, 40(3): 401-426.
[229] ZHANG M, HE L, JIN X, et al. Flagella and Their Properties Affect the Transport and Deposition Behaviors of Escherichia coli in Quartz Sand[J]. Environmental Science & Technology, 2021, 55(8): 4964-4973.
[230] GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization[J]. SIAM Review, 2005, 47(1): 99-131.
[231] AUSET M, KELLER A A. Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels[J]. Water Resources Research, 2006, 42(12)
[232] BRADFORD S A, BETTAHAR M. Straining, Attachment, and Detachment of Cryptosporidium Oocysts in Saturated Porous Media[J]. Journal of Environmental Quality, 2005, 34(2): 469-478.
[233] MOSTAFA M, VAN GEEL P J. Conceptual Models and Simulations for Biological Clogging in Unsaturated Soils[J]. Vadose Zone Journal, 2007, 6(1): 175-185.
[234] LI X, XU H, GAO B, et al. Transport of a PAH-degrading bacterium in saturated limestone media under various physicochemical conditions: Common and unexpected retention and remobilization behaviors[J]. Journal of Hazardous Materials, 2019, 380: 120858.
[235] KUZNAR Z A, ELIMELECH M. Direct microscopic observation of particle deposition in porous media: Role of the secondary energy minimum[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294(1): 156-162.
[236] TORKZABAN S, BRADFORD S A, VAN GENUCHTEN M T, et al. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining[J]. Journal of Contaminant Hydrology, 2008, 96(1-4): 113-127.
[237] LIU Z, LI J, HONG Z, et al. Effect of Fe/Al Hydroxides on Transport and Retention of Escherichia coli in Saturated Sand Media[J]. Geomicrobiology Journal, 2017, 34(10): 881-888.
[238] BAYAT A E, JUNIN R, MOHSIN R, et al. Influence of clay particles on Al2O3 and TiO2 nanoparticles transport and retention through limestone porous media: measurements and mechanisms[J]. Journal of Nanoparticle Research, 2015, 17(5)
[239] CHEN J, HUBBARD S, RUBIN Y. Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model[J]. Water Resources Research, 2001, 37(6): 1603-1613.
[240] HUBBARD S S, RUBIN Y, MAJER E. Spatial correlation structure estimation using geophysical and hydrogeological data[J]. Water Resources Research, 1999, 35(6): 1809-1825.
[241] HUBBARD S S, CHEN J, PETERSON J, et al. Hydrogeological characterization of the South Oyster bacterial transport site using geophysical data[J]. Water Resources Research, 2001, 37(10): 2431-2456.
[242] LIN D, HU L, BRADFORD S A, et al. Simulation of Colloid Transport and Retention Using a Pore-Network Model With Roughness and Chemical Heterogeneity on Pore Surfaces[J]. Water Resources Research, 2021, 57(2)
[243] TORKZABAN S, HOCKING M, BRADFORD S A, et al. Modeling Virus Transport and Removal during Storage and Recovery in Heterogeneous Aquifers[J]. Journal of Hydrology, 2019, 578
[244] BHATTACHARJEE S, RYAN J N, ELIMELECH M. Virus transport in physically and geochemically heterogeneous subsurface porous media[J]. Journal of Contaminant Hydrology, 2002, 57(3): 161-187.
[245] JOHNSON P R, SUN N, ELIMELECH M. Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements[J]. Environmental Science & Technology, 1996, 30(11): 3284-3293.
[246] KATZOURAKIS V E, CHRYSIKOPOULOS C V. Impact of Spatially Variable Collision Efficiency on the Transport of Biocolloids in Geochemically Heterogeneous Porous Media[J]. Water Resources Research, 2018, 54(6): 3841-3862.
[247] HARVEY R W, KINNER N E, MACDONALD D, et al. Role of physical heterogeneity in the interpretation of small‐scale laboratory and field observations of bacteria, microbial‐sized microsphere, and bromide transport through aquifer sediments[J]. Water Resources Research, 1993, 29(8): 2713-2721.
[248] JOHNSON W P, BLUE K A, LOGAN B E, et al. Modeling Bacterial Detachment During Transport Through Porous Media as a Residence-Time-Dependent Process[J]. Water Resources Research, 1995, 31(11): 2649-2658.

所在学位评定分委会
资源与环境
国内图书分类号
X52/X53
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/583168
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
柯东方. 地下水流与微生物堵塞及运移过程的多尺度耦合反馈研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749301-柯东方-环境科学与工程(9568KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[柯东方]的文章
百度学术
百度学术中相似的文章
[柯东方]的文章
必应学术
必应学术中相似的文章
[柯东方]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。