[1] LIU Y, LIU C, NELSON W C, et al. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns[J]. Environmental Science & Technology, 2017, 51(9): 4877-4886.
[2] BOANO F, HARVEY J W, MARION A, et al. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications[J]. Reviews of Geophysics, 2014, 52(4): 603-679.
[3] YANG C, ZHANG Y-K, LIU Y, et al. Model-Based Analysis of the Effects of Dam-Induced River Water and Groundwater Interactions on Hydro-Biogeochemical Transformation of Redox Sensitive Contaminants in a Hyporheic Zone[J]. Water Resources Research, 2018, 54(9): 5973-5985.
[4] POLIZZOTTO M L, KOCAR B D, BENNER S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia[J]. Nature, 2008, 454(7203): 505-U505.
[5] HUNT R J, KRABBENHOFT D P, ANDERSON M P. Assessing hydrogeochemical heterogeneity in natural and constructed wetlands[J]. Biogeochemistry, 1997, 39(3): 271-293.
[6] NEUMANN R B, ASHFAQUE K N, BADRUZZAMAN A B M, et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh[J]. Nature Geoscience, 2010, 3(1): 46-52.
[7] VANDEVIVERE P, BAVEYE P. Saturated Hydraulic Conductivity Reduction Caused by Aerobic Bacteria in Sand Columns[J]. Soil Science Society of America Journal, 1992, 56(1): 1-13.
[8] BAVEYE P, VANDEVIVERE P, HOYLE B L, et al. Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(2): 123-191.
[9] THULLNER M. Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems[J]. Ecological Engineering, 2010, 36(2): 176-196.
[10] BROVELLI A, MALAGUERRA F, BARRY D A. Bioclogging in porous media: Model development and sensitivity to initial conditions[J]. Environmental Modelling & Software, 2009, 24(5): 611-626.
[11] DUPIN H J, MCCARTY P L. Impact of colony morphologies and disinfection on biological clogging in porous media[J]. Environmental Science & Technology, 2000, 34(8): 1513-1520.
[12] JUNG H, MEILE C. Upscaling of microbially driven first-order reactions in heterogeneous porous media[J]. Journal of Contaminant Hydrology, 2019, 224: 103483.
[13] YAN Z, LIU C, LIU Y, et al. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates[J]. Water Resources Research, 2017, 53(11): 8698-8714.
[14] DING D, BENSON D A. Simulating biodegradation under mixing-limited conditions using Michaelis–Menten (Monod) kinetic expressions in a particle tracking model[J]. Advances in Water Resources, 2015, 76: 109-119.
[15] CHAPELLE F H, LOVLEY D R. Rates of Microbial Metabolism in Deep Coastal Plain Aquifers[J]. Applied and Environmental Microbiology, 1990, 56(6): 1865-1874.
[16] HARMS H, BOSMA T N P. Mass transfer limitation of microbial growth and pollutant degradation[J]. Journal of Industrial Microbiology and Biotechnology, 1997, 18(2-3): 97-105.
[17] LOPEZ-PEñA L A, MEULENBROEK B, VERMOLEN F. Conditions for upscalability of bioclogging in pore network models[J]. Computational Geosciences, 2018, 22(6): 1543-1559.
[18] BACHOFEN R, FERLONI P, FLYNN I. Microorganisms in the subsurface[J]. Microbiological Research, 1998, 153(1): 1-22.
[19] PERUJO N, ROMANI A M, SANCHEZ-VILA X. A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics[J]. Science of the Total Environment, 2019, 669: 559-569.
[20] HORN H, LACKNER S. Modeling of biofilm systems: a review[J]. Advances in Biochemical Engineering/Biotechnology, 2014, 146: 53-76.
[21] COSTERTON J W, LEWANDOWSKI Z, CALDWELL D E, et al. MICROBIAL BIOFILMS[J]. Annual Review of Microbiology, 1995, 49(1): 711-745.
[22] BARAI P, KUMAR A, MUKHERJEE P P. Modeling of Mesoscale Variability in Biofilm Shear Behavior[J]. PLoS One, 2016, 11(11): e0165593.
[23] HARVEY R W, SMITH R L, GEORGE L. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer[J]. Applied and Environmental Microbiology, 1984, 48(6): 1197-1202.
[24] GODSY E M, GOERLITZ D F, GRBIC-GALIC D. Methanogenic Biodégradation of Creosote Contaminants in Natural and Simulated Ground-Water Ecosystems[J]. Groundwater, 1992, 30(2): 232-242.
[25] ALBRECHTSEN H J R. Distribution of bacteria, estimated by a viable count method, and heterotrophic activity in different size fractions of aquifer sediment[J]. Geomicrobiology Journal, 1994, 12(4): 253-264.
[26] MURPHY E M, GINN T R. Modeling microbial processes in porous media[J]. Hydrogeology Journal, 2000, 8(1): 142-158.
[27] MARZADRI A, TONINA D, BELLIN A. Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: Application to gravel bed rivers with alternate-bar morphology[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G3)
[28] ZARNETSKE J P, HAGGERTY R, WONDZELL S M, et al. Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones[J]. Water Resources Research, 2012, 48(11)
[29] GHARASOO M, CENTLER F, VAN CAPPELLEN P, et al. Kinetics of Substrate Biodegradation under the Cumulative Effects of Bioavailability and Self-Inhibition[J]. Environmental Science & Technology, 2015, 49(9): 5529-5537.
[30] BEST J B. The inference of intracellular enzymatic properties from kinetic data obtained on living cells. I. Some kinetic considerations regarding an enzyme enclosed by a diffusion barrier[J]. Journal of Cellular and Comparative Physiology, 1955, 46(1): 1-27.
[31] CONTOIS D E. Kinetics of microbial growth: theory and applications[M]. University of California, Los Angeles, 1957.
[32] CONTOIS, D. E. Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures[J]. Journal of General Microbiology, 1959, 21(1): 40-50.
[33] MOLZ F J, WIDDOWSON M A, BENEFIELD L D. Simulation of Microbial Growth Dynamics Coupled to Nutrient and Oxygen Transport in Porous Media[J]. Water Resources Research, 1986, 22(8): 1207-1216.
[34] RITTMANN B E, MCCARTY P L. Model of steady-state-biofilm kinetics[J]. Biotechnology and Bioengineering, 1980, 22(11): 2343-2357.
[35] HAYES C S, KOSKINIEMI S, RUHE Z C, et al. Mechanisms and biological roles of contact-dependent growth inhibition systems[J]. Cold Spring Harb Perspect Med, 2014, 4(2)
[36] KE D, LI R, LIU C. The feedback interaction between biomass accumulation and heterogeneous flow in porous media: Effect of shear stresses[J]. Journal of Hydrology, 2021, 597: 126083.
[37] GALBAN C J, LOCKE B R. Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold[J]. Biotechnology and Bioengineering, 1999, 65(2): 121-132.
[38] GUJER W, HENZE M, MINO T, et al. The Activated Sludge Model No. 2: biological phosphorus removal[J]. Water Science and Technology, 1995,31(2): 1-11.
[39] GANG H Z, LIU M T, MU B Z. Modeling of microorganisms transport in a cylindrical pore[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(6): 495-500.
[40] LEVENSPIEL O. The monod equation: A revisit and a generalization to product inhibition situations[J]. Biotechnology and Bioengineering, 1980, 22(8): 1671-1687.
[41] BAJRACHARYA B M, LU C, CIRPKA O A. Modeling substrate-bacteria-grazer interactions coupled to substrate transport in groundwater[J]. Water Resources Research, 2014, 50(5): 4149-4162.
[42] BRADFORD S A, WANG Y, KIM H, et al. Modeling microorganism transport and survival in the subsurface[J]. Journal of Environment Quality, 2014, 43(2): 421-440.
[43] XIAN Y, JIN M, ZHAN H, et al. Reactive Transport of Nutrients and Bioclogging During Dynamic Disconnection Process of Stream and Groundwater[J]. Water Resources Research, 2019
[44] SAMSO R, GARCIA J, MOLLE P, et al. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to Constructed Wetlands[J]. Journal of Environmental Management, 2016, 165: 271-279.
[45] CAPDEVILLE B, BELKHADIR R, ROQUES H. Etude descriptive fondamentale et modelisation de la croissance d'un film biologique—II. Nouveau concept de modelisation de la croissance d'un film biologique[J]. Water Research, 1988, 22(1): 71-77.
[46] ZYSSET A, STAUFFER F, DRACOS T. Modeling of reactive groundwater transport governed by biodegradation[J]. Water Resources Research, 1994, 30(8): 2423-2434.
[47] GORDEEVA Y L, BORODKIN A G, GORDEEVA E L, et al. Mathematical Modeling of the Fermentation Process for Lactic Acid Production: A Generalized Model[J]. Theoretical Foundations of Chemical Engineering, 2019, 53(1): 43-50.
[48] KILDSGAARD J, ENGESGAARD P. Numerical analysis of biological clogging in two-dimensional sand box experiments[J]. Journal of Contaminant Hydrology, 2001, 50(3): 261-285.
[49] ZHU Q, WEN Z, LIU H. Microbial effects on hydraulic conductivity estimation by single-well injection tests in a petroleum-contaminated aquifer[J]. Journal of Hydrology, 2019, 573: 352-364.
[50] SEMENOV A V, OVERBEEK L V, BRUGGEN A H C V. Percolation and Survival of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in Soil Amended with Contaminated Dairy Manure or Slurry[J]. Applied and Environmental Microbiology, 2009, 75(10): 3206-3215.
[51] AKHAVAN M, IMHOFF P T, ANDRES A S, et al. Model evaluation of denitrification under rapid infiltration basin systems[J]. Journal of Contaminant Hydrology, 2013, 152: 18-34.
[52] BERLIN M, SURESH KUMAR G, NAMBI I M. Numerical modeling of biological clogging on transport of nitrate in an unsaturated porous media[J]. Environmental Earth Sciences, 2015, 73(7): 3285-3298.
[53] KINDRED J S, CELIA M A. Contaminant transport and biodegradation: 2. Conceptual model and test simulations[J]. Water Resources Research, 1989, 25(6): 1149-1159.
[54] LEE M-S, LEE K-K, HYUN Y, et al. Nitrogen transformation and transport modeling in groundwater aquifers[J]. Ecological Modelling, 2006, 192(1-2): 143-159.
[55] MACQUARRIE K T B, SUDICKY E A. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: I. Model formulation and performance[J]. Journal of Contaminant Hydrology, 2001, 47(1): 53-84.
[56] ESSAID H I, BEKINS B A, GODSY E M, et al. Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site[J]. Water Resources Research, 1995, 31(12): 3309-3327.
[57] HEIJNEN J J, VAN DIJKEN J P. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms[J]. Biotechnology and Bioengineering, 1992, 39(8): 833-858.
[58] RITTMANN B E, MCCARTY P L. Environmental Biotechnology: Principles and Applications[M]. Boston: McGraw-Hill, 2001.
[59] THULLNER M, REGNIER P, VAN CAPPELLEN P. Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions[J]. Geomicrobiology Journal, 2007, 24(3-4): 139-155.
[60] HOWELL J M, COYNE M S, CORNELIUS P L. Effect of Sediment Particle Size and Temperature on Fecal Bacteria Mortality Rates and the Fecal Coliform/Fecal Streptococci Ratio[J]. Journal of Environmental Quality, 1996, 25(6): 1216-1220.
[61] JAMIESON R C, JOY D M, LEE H, et al. Persistence of enteric bacteria in alluvial streams[J]. Journal of Environmental Engineering and Science, 2004, 3(3): 203-212.
[62] JAMIESON R C, JOY D M, LEE H, et al. Resuspension of Sediment-Associated Escherichia coli in a Natural Stream[J]. Journal of Environmental Quality, 2005, 34(2): 581-589.
[63] CHAMBLESS J D, STEWART P S. A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms[J]. Biotechnology and Bioengineering, 2007, 97(6): 1573-1584.
[64] RITTMAN B E. The effect of shear stress on biofilm loss rate[J]. Biotechnology and Bioengineering, 1982, 24(2): 501-506.
[65] SUDICKY E A, CHERRY J A. Field Observations of Tracer Dispersion Under Natural Flow Conditions in an Unconfined Sandy Aquifer[J]. Water Quality Research Journal, 1979, 14(1): 1-18.
[66] GELHAR L W, AXNESS C L. Three-dimensional stochastic analysis of macrodispersion in aquifers[J]. Water Resources Research, 1983, 19(1): 161-180.
[67] ANDERSON M P, CHERRY J A. Using models to simulate the movement of contaminants through groundwater flow systems[J]. C R C Critical Reviews in Environmental Control, 1979, 9(2): 97-156.
[68] GELHAR L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resources Research, 1986, 22(9S): 135S-145S.
[69] WHITE A F, BRANTLEY S L. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?[J]. Chemical Geology, 2003, 202(3-4): 479-506.
[70] BAO C, WU H, LI L, et al. Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado[J]. Environmental Science & Technology, 2014, 48(17): 10116-10127.
[71] LIU C, ZACHARA J M, QAFOKU N P, et al. Scale-dependent desorption of uranium from contaminated subsurface sediments[J]. Water Resources Research, 2008, 44(8)
[72] LIU C, SHANG J, KERISIT S, et al. Scale-dependent rates of uranyl surface complexation reaction in sediments[J]. Geochimica et Cosmochimica Acta, 2013, 105: 326-341.
[73] LIU C X, SHI Z Q, ZACHARA J M. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation[J]. Environmental Science & Technology, 2009, 43(17): 6560-6566.
[74] LIU C, SHANG J, SHAN H, et al. Effect of subgrid heterogeneity on scaling geochemical and biogeochemical reactions: a case of U(VI) desorption[J]. Environmental Science & Technology, 2014, 48(3): 1745-1752.
[75] KERISIT S, LIU C X. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 4937-4952.
[76] LIU C, LIU Y, KERISIT S, et al. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 191-216.
[77] MEILE C, TUNCAY K. Scale dependence of reaction rates in porous media[J]. Advances in Water Resources, 2006, 29(1): 62-71.
[78] JUNG H, NAVARRE-SITCHLER A. Physical heterogeneity control on effective mineral dissolution rates[J]. Geochimica et Cosmochimica Acta, 2018, 227: 246-263.
[79] JUNG H, NAVARRE-SITCHLER A. Scale effect on the time dependence of mineral dissolution rates in physically heterogeneous porous media[J]. Geochimica et Cosmochimica Acta, 2018, 234: 70-83.
[80] WHITAKER S. Diffusion and Heterogeneous Reaction in Porous Media[M]//WHITAKER S. The Method of Volume Averaging. Dordrecht; Springer Netherlands. 1999: 1-71.
[81] HORNUNG U. Miscible Displacement[M]//HORNUNG U. Homogenization and Porous Media. New York, NY; Springer New York. 1997: 129-146.
[82] BRENNER H, STEWARTSON K. Dispersion resulting from flow through spatially periodic porous media[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1980, 297(1430): 81-133.
[83] MOORE O W, CURTI L, WOULDS C, et al. Long-term organic carbon preservation enhanced by iron and manganese[J]. Nature, 2023
[84] BRADLEY J A, AMEND J P, LAROWE D E. Necromass as a Limited Source of Energy for Microorganisms in Marine Sediments[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(2): 577-590.
[85] THULLNER M, DALE A W, REGNIER P. Global-scale quantification of mineralization pathways in marine sediments: A reaction-transport modeling approach[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10)
[86] LI R, YANG C, KE D, et al. The scaling of mineral dissolution rates under complex flow conditions[J]. Geochimica et Cosmochimica Acta, 2020, 274: 63-78.
[87] RAJE D S, KAPOOR V. Experimental Study of Bimolecular Reaction Kinetics in Porous Media[J]. Environmental Science & Technology, 2000, 34(7): 1234-1239.
[88] MASSOUDIEH A, DENTZ M. Upscaling non-linear reactive transport in correlated velocity fields[J]. Advances in Water Resources, 2020, 143
[89] DENTZ M, LE BORGNE T, ENGLERT A, et al. Mixing, spreading and reaction in heterogeneous media: a brief review[J]. Journal of Contaminant Hydrology, 2011, 120-121: 1-17.
[90] WOOD B D, RADAKOVICH K, GOLFIER F. Effective reaction at a fluid–solid interface: Applications to biotransformation in porous media[J]. Advances in Water Resources, 2007, 30(6-7): 1630-1647.
[91] WEN H, LI L. An upscaled rate law for magnesite dissolution in heterogeneous porous media[J]. Geochimica et Cosmochimica Acta, 2017, 210: 289-305.
[92] CHAKRAWAL A, HERRMANN A M, KOESTEL J, et al. Dynamic upscaling of decomposition kinetics for carbon cycling models[J]. Geoscientific Model Development, 2020, 13(3): 1399-1429.
[93] XIA L, ZHENG X L, SHAO H B, et al. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns[J]. Journal of Hydrology, 2016, 535: 293-300.
[94] WU J, WANG X-B, WANG H-F, et al. Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery[J]. RSC Advances, 2017, 7(59): 37382-37391.
[95] XIA L, YOU H C, LIU J H, et al. Characteristics and origin of clogging-functional bacteria during managed aquifer recharge: A laboratory study[J]. Journal of Environmental Management, 2022, 312
[96] ILIUTA I, ILIUTA M C, LARACHI F. Hydrodynamics modeling of bioclogging in waste gas treating trickle-bed bioreactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5044-5052.
[97] OKUBO T, MATSUMOTO J. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge[J]. Water Resources Research, 1979, 15(6): 1536-1542.
[98] KARRABI M, SéCHET P, MORRA C, et al. Investigation of hydrodynamic/biomass growth coupling in a pilot scale granular bioreactor at low pore Reynolds number[J]. Chemical Engineering Science, 2011, 66(8): 1765-1782.
[99] SEIFERT D, ENGESGAARD P. Sand box experiments with bioclogging of porous media: Hydraulic conductivity reductions[J]. Journal of Contaminant Hydrology, 2012, 136-137: 1-9.
[100] KONE T, GOLFIER F, ORGOGOZO L, et al. Impact of biofilm-induced heterogeneities on solute transport in porous media[J]. Water Resources Research, 2014, 50(11): 9103-9119.
[101] SEYMOUR J D, GAGE J P, CODD S L, et al. Magnetic resonance microscopy of biofouling induced scale dependent transport in porous media[J]. Advances in Water Resources, 2007, 30(6): 1408-1420.
[102] THULLNER M, ZEYER J, KINZELBACH W. Influence of Microbial Growth on Hydraulic Properties of Pore Networks[J]. Transport in Porous Media, 2002, 49(1): 99-122.
[103] OR D, SMETS B F, WRAITH J M, et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review[J]. Advances in Water Resources, 2007, 30(6-7): 1505-1527.
[104] KIM J W, CHOI H, PACHEPSKY Y A. Biofilm morphology as related to the porous media clogging[J]. Water Research, 2010, 44(4): 1193-1201.
[105] OSTVAR S, ILTIS G, DAVIT Y, et al. Investigating the influence of flow rate on biofilm growth in three dimensions using microimaging[J]. Advances in Water Resources, 2018, 117: 1-13.
[106] CARREL M, MORALES V L, DENTZ M, et al. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling[J]. Water Resources Research, 2018, 54(3): 2183-2198.
[107] AUFRECHT J A, FOWLKES J D, BIBLE A N, et al. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network[J]. PLoS One, 2019, 14(6): e0218316.
[108] DENG W, CARDENAS M B, KIRK M F, et al. Effect of permeable biofilm on micro- and macro-scale flow and transport in bioclogged pores[J]. Environmental Science & Technology, 2013, 47(19): 11092-11098.
[109] YAN Z, WANG T, WANG L, et al. Microscale water distribution and its effects on organic carbon decomposition in unsaturated soils[J]. Science of the Total Environment, 2018, 644: 1036-1043.
[110] ROSENZWEIG R, FURMAN A, SHAVIT U. A Channel Network Model as a Framework for Characterizing Variably Saturated Flow in Biofilm-Affected Soils[J]. Vadose Zone Journal, 2013, 12(2)
[111] CLEMENT T P, HOOKER B S, SKEEN R S. Macroscopic Models for Predicting Changes in Saturated Porous Media Properties Caused by Microbial Growth[J]. Groundwater, 1996, 34(5): 934-942.
[112] VANDEVIVERE P. Bacterial clogging of porous media: A new modelling approach[J]. Biofouling, 1995, 8(4): 281-291.
[113] TAYLOR S W, MILLY P C D, JAFFé P R. Biofilm growth and the related changes in the physical properties of a porous medium: 2. Permeability[J]. Water Resources Research, 1990, 26(9): 2161-2169.
[114] SEKI K, MIYAZAKI T. A mathematical model for biological clogging of uniform porous media[J]. Water Resources Research, 2001, 37(12): 2995-2999.
[115] IVES K J, PIENVICHITR V. Kinetics of the filtration of dilute suspensions[J]. Chemical Engineering Science, 1965, 20(11): 965-973.
[116] KOZENY J. Uber kapillare Leitung des Wassers im Boden[J]. Sitzber Akad Wiss Wein, Math-naturw, 1927, 136: Abt. II a, P. 271.
[117] CARMAN P C. Fluid flow through granular beds[J]. Trans Inst Chem Eng, 1937, 15: 150-166.
[118] BLAZEJEWSKI R, MURAT-BLAZEJEWSKA S. Soil clogging phenomena in constructed wetlands with subsurface flow[J]. Water Science and Technology, 1997, 35(5): 183-188.
[119] 邵川 , 周正伟 , 李俊 , 等. 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 基于玻璃微珠填料生物滤池堵塞模型 [J]. 环 境工程学报 , 2017, 11(10): 7.
[120] 邵川 . 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 颗粒填料生物滤池堵塞模型研究 [D]. 南京大学 , 2017.
[121] CUNNINGHAM A B, CHARACKLIS W G, ABEDEEN F, et al. Influence of biofilm accumulation on porous media hydrodynamics[J]. Environmental Science & Technology, 1991, 25(7): 1305-1311.
[122] VANDEVIVERE P, BAVEYE P. Relationship between Transport of Bacteria and Their Clogging Efficiency in Sand Columns[J]. Applied and Environmental Microbiology, 1992, 58(8): 2523-2530.
[123] KAPELLOS G E, ALEXIOU T S, PAYATAKES A C. Hierarchical simulator of biofilm growth and dynamics in granular porous materials[J]. Advances in Water Resources, 2007, 30(6): 1648-1667.
[124] BRUNET J-P L, LI L, KARPYN Z T, et al. Fracture opening or self-sealing: Critical residence time as a unifying parameter for cement–CO2–brine interactions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 25-37.
[125] CARROLL S, CAREY J W, DZOMBAK D, et al. Review: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments[J]. International Journal of Greenhouse Gas Control, 2016, 49: 149-160.
[126] SOLER J M, MäDER U K. Interaction Between Hyperalkaline Fluids and Rocks Hosting Repositories for Radioactive Waste: Reactive Transport Simulations[J]. Nuclear Science and Engineering, 2005, 151(1): 128-133.
[127] HABERMAN B A, YOUNG J B. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell[J]. International Journal of Heat & Mass Transfer, 2004, 47(17-18): 3617-3629.
[128] CHAPMAN B H, JAMES R, JUNG R, et al. Modelling the transport of reacting chemical contaminants in natural streams[J]. Marine and Freshwater Research, 1982, 33: 617-628.
[129] SHUAI P, CARDENAS M B, KNAPPETT P S K, et al. Denitrification in the banks of fluctuating rivers: The effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow[J]. Water Resources Research, 2017, 53(9): 7951-7967.
[130] XU T, PRUESS K. Modeling Multiphase Non-isothermal Fluid Flow and Reactive Geochemical Transport in Variably Saturated Fractured Rocks: 1. Methodology[J]. American Journal of Science, 2001, 301(1): 16-33.
[131] GLASSLEY W E, NITAO J J, GRANT C W. Three-dimensional spatial variability of chemical properties around a monitored waste emplacement tunnel[J]. Journal of Contaminant Hydrology, 2003, 62-63: 495-507.
[132] LI L, PETERS C A, CELIA M A. Upscaling geochemical reaction rates using pore-scale network modeling[J]. Advances in Water Resources, 2006, 29(9): 1351-1370.
[133] LI L, MAHER K, NAVARRE-SITCHLER A, et al. Expanding the role of reactive transport models in critical zone processes[J]. Earth-Science Reviews, 2017, 165: 280-301.
[134] RAJABZADEH A R, LEGGE R L, WEBER K P. Multiphysics modelling of flow dynamics, biofilm development and wastewater treatment in a subsurface vertical flow constructed wetland mesocosm[J]. Ecological Engineering, 2015, 74: 107-116.
[135] NEWCOMER M E, HUBBARD S S, FLECKENSTEIN J H, et al. Simulating bioclogging effects on dynamic riverbed permeability and infiltration[J]. Water Resources Research, 2016, 52(4): 2883-2900.
[136] CARUSO A, BOANO F, RIDOLFI L, et al. Biofilm-induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure[J]. Geophysical Research Letters, 2017, 44(10): 4917-4925.
[137] NEWCOMER M E, HUBBARD S S, FLECKENSTEIN J H, et al. Influence of Hydrological Perturbations and Riverbed Sediment Characteristics on Hyporheic Zone Respiration of CO2 and N2[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(3): 902-922.
[138] EHLINGER F, AUDIC J M, VERRIER D, et al. The Influence of the Carbon Source on Microbiological Clogging in an Anaerobic Filter[J]. Water Science & Technology, 1987, 19(1): 261-273.
[139] SHARP R R, CUNNINGHAM A B, KOMLOS J, et al. Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects[J]. Water Science and Technology, 1999, 39(7): 195-201.
[140] STEWART T L, FOGLER H S. Biomass plug development and propagation in porous media[J]. Biotechnology and Bioengineering, 2001, 72(3): 353-363.
[141] KILDSGAARD J, ENGESGAARD P. Tracer Tests and Image Analysis of Biological Clogging in a Two-Dimensional Sandbox Experiment[J]. Ground Water Monitoring and Remediation, 2002, 22(2): 60-67.
[142] SEKI K, THULLNER M, HANADA J, et al. Moderate bioclogging leading to preferential flow paths in biobarriers[J]. Groundwater Monitoring and Remediation, 2006, 26(3): 68-76.
[143] RODRíGUEZ-ESCALES P, FOLCH A, VAN BREUKELEN B M, et al. Modeling long term Enhanced in situ Biodenitrification and induced heterogeneity in column experiments under different feeding strategies[J]. Journal of Hydrology, 2016, 538: 127-137.
[144] SEIFERT D, ENGESGAARD P. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media[J]. Journal of Contaminant Hydrology, 2007, 93(1-4): 58-71.
[145] BOTTERO S, STORCK T, HEIMOVAARA T J, et al. Biofilm development and the dynamics of preferential flow paths in porous media[J]. Biofouling, 2013, 29(9): 1069-1086.
[146] MASCIOPINTO C, LA MANTIA R, CHRYSIKOPOULOS C V. Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy[J]. Water Resources Research, 2008, 44(1)
[147] PANG L, CLOSE M, GOLTZ M, et al. Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages[J]. Environment International, 2004, 29(7): 907-921.
[148] PANG L. Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores[J]. Journal of Environment Quality, 2009, 38(4): 1531-1559.
[149] OUYANG Y, SHINDE D, MANSELL R S, et al. Colloid‐enhanced transport of chemicals in subsurface environments: A review[J]. Critical Reviews in Environmental Science and Technology, 1996, 26(2): 189-204.
[150] BAUMANN T. Colloid Transport Processes: Experimental Evidence from the Pore Scale to the Field Scale[J]. Springer Berlin Heidelberg, 2007
[151] HARVEY R W, GARABEDIAN S P. Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer[J]. Environmental Science & Technology, 1991, 25(1): 178-185.
[152] SCHIJVEN J F, HASSANIZADEH S M. Removal of Viruses by Soil Passage: Overview of Modeling, Processes, and Parameters[J]. Critical Reviews in Environmental Science and Technology, 2000, 30(1): 49-127.
[153] GINN T R, WOOD B D, NELSON K E, et al. Processes in microbial transport in the natural subsurface[J]. Advances in Water Resources, 2002,25(8): 1017-1042.
[154] BOLSTER C H, MILLS A L, HORNBERGER G M, et al. Spatial distribution of deposited bacteria following Miscible Displacement Experiments in intact cores[J]. Water Resources Research, 1999, 35(6): 1797-1807.
[155] REDMAN J A, GRANT S B, OLSON T M, et al. Pathogen Filtration, Heterogeneity, and the Potable Reuse of Wastewater[J]. Environmental Science & Technology, 2001, 35(9): 1798-1805.
[156] BRADFORD S A, SIMUNEK J, WALKER S L. Transport and straining of E. coli O157:H7 in saturated porous media[J]. Water Resources Research, 2006, 42(12)
[157] BRADFORD S A, YATES S R, BETTAHAR M, et al. Physical factors affecting the transport and fate of colloids in saturated porous media[J]. Water Resources Research, 2002, 38(12): 63-61-63-12.
[158] FOPPEN J W A, MPOROKOSO A, SCHIJVEN J F. Determining straining of Escherichia coli from breakthrough curves[J]. Journal of Contaminant Hydrology, 2005, 76(3): 191-210.
[159] MCDOWELL-BOYER L M, HUNT J R, SITAR N. Particle transport through porous media[J]. Water Resources Research, 1986, 22(13): 1901-1921.
[160] WAN J, TOKUNAGA T K, TSANG C-F. Bacterial Sedimentation Through a Porous Medium[J]. Water Resources Research, 1995, 31(7): 1627-1636.
[161] HARVEY R W, METGE D W, KINNER N, et al. Physiological Considerations in Applying Laboratory-Determined Buoyant Densities to Predictions of Bacterial and Protozoan Transport in Groundwater: Results of In-Situ and Laboratory Tests[J]. Environmental Science & Technology, 1997, 31(1): 289-295.
[162] LIU L, LIU G, ZHOU J, et al. Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media[J]. Environmental Science & Technology, 2021, 55(8): 5559-5568.
[163] TORKZABAN S, TAZEHKAND S S, WALKER S L, et al. Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry[J]. Water Resources Research, 2008, 44(4)
[164] RIJNAARTS H H M, NORDE W, BOUWER E J, et al. Reversibility and mechanism of bacterial adhesion[J]. Colloids and Surfaces B: Biointerfaces, 1995, 4(1): 5-22.
[165] REDMAN J A, WALKER S L, ELIMELECH M. Bacterial Adhesion and Transport in Porous Media: Role of the Secondary Energy Minimum[J]. Environmental Science & Technology, 2004, 38(6): 1777-1785.
[166] WALKER S L, REDMAN J A, ELIMELECH M. Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport[J]. Langmuir, 2004, 20(18): 7736-7746.
[167] RAJAGOPALAN R, TIEN C. Trajectory analysis of deep‐bed filtration with the sphere‐in‐cell porous media model[J]. AIChE Journal, 1976, 22(3): 523-533.
[168] NING Z, LI R, LIAN K, et al. Transport and retention of Shewanella oneidensis strain MR1 in water-saturated porous media with different grain-surface properties[J]. Chemosphere, 2019, 233: 57-66.
[169] BRADFORD S A, KIM H, HEADD B, et al. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts[J]. Environmental Science & Technology, 2016, 50(3): 1295-1303.
[170] KNAPPETT P S, DU J, LIU P, et al. Importance of Reversible Attachment in Predicting E. Coli Transport in Saturated Aquifers From Column Experiments[J]. Advances in Water Resources, 2014, 63: 120-130.
[171] MURPHY E M, GINN T R, CHILAKAPATI A, et al. The influence of physical heterogeneity on microbial degradation and distribution in porous media[J]. Water Resources Research, 1997, 33(5): 1087-1103.
[172] OSS C J V. Interfacial Forces in Aqueous Media, F, 1994 [C].
[173] ELIMELECH M, GREGORY J, JIA X, et al. CHAPTER 3 - Surface interaction potentials[M]//ELIMELECH M, GREGORY J, JIA X, et al. Particle Deposition and Aggregation. Butterworth-Heinemann. 1995: 33-67.
[174] LI X, XU H, GAO B, et al. Retention and Transport of PAH-Degrading Bacterium Herbaspirillum chlorophenolicum FA1 in Saturated Porous Media Under Various Physicochemical Conditions[J]. Water, Air, & Soil Pollution, 2017, 228(7)
[175] ZHANG W, WU S, QIN Y, et al. Deposition and mobilization of viruses in unsaturated porous media: Roles of different interfaces and straining[J]. Environmental Pollution, 2021, 270: 116072.
[176] BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media[J]. Environmental Science & Technology, 2003, 37(10): 2242-2250.
[177] TUFENKJI N, REDMAN J A, ELIMELECH M. Interpreting Deposition Patterns of Microbial Particles in Laboratory-Scale Column Experiments[J]. Environmental Science & Technology, 2003, 37(3): 616-623.
[178] SIM Y, CHRYSIKOPOULOS C V. One-Dimensional Virus Transport in Porous Media With Time-Dependent Inactivation Rate Coefficients[J]. Water Resources Research, 1996, 32(8): 2607-2611.
[179] BRADFORD S A, HEADD B, ARYE G, et al. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes[J]. Journal of Hydrology, 2015, 525: 760-768.
[180] YANG X, SUN H, YANG Y, et al. Recent progress in multi-scale modeling and simulation of flow and solute transport in porous media[J]. WIREs Water, 2021, 8(6): e1561.
[181] GOLDBERG E, SCHERINGER M, BUCHELI T D, et al. Prediction of nanoparticle transport behavior from physicochemical properties: machine learning provides insights to guide the next generation of transport models[J]. Environmental Science: Nano, 2015, 2(4): 352-360.
[182] YU J, ZHANG D, REN W, et al. Transport of Enterococcus faecalis in granular activated carbon column: Potential energy, migration, and release[J]. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110415.
[183] JAIN S, ARNEPALLI D N. Adhesion and Deadhesion of Ureolytic Bacteria on Sand under Variable Pore Fluid Chemistry[J]. Journal of Environmental Engineering, 2020, 146(6)
[184] KIM H N, BRADFORD S A, WALKER S L. Escherichia coli O157:H7 Transport in Saturated Porous Media: Role of Solution Chemistry and Surface Macromolecules[J]. Environmental Science & Technology, 2009, 43(12): 4340-4347.
[185] HONG Z N, JIANG J, LI J Y, et al. Adhesion mediated transport of bacterial pathogens in saturated sands coated by phyllosilicates and Al-oxides[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 215-225.
[186] LI X, JOHNSON W P. Nonmonotonic Variations in Deposition Rate Coefficients of Microspheres in Porous Media under Unfavorable Deposition Conditions[J]. Environmental Science & Technology, 2005, 39(6): 1658-1665.
[187] HILPERT M, JOHNSON W P. A Binomial Modeling Approach for Upscaling Colloid Transport Under Unfavorable Attachment Conditions: Emergent Prediction of Nonmonotonic Retention Profiles[J]. Water Resources Research, 2018, 54(1): 46-60.
[188] HILPERT M, RASMUSON A, JOHNSON W P. A binomial modeling approach for upscaling colloid transport under unfavorable conditions: Emergent prediction of extended tailing[J]. Water Resources Research, 2017, 53(7): 5626-5644.
[189] NING Z, LI R, LIAN H, et al. Effects of flow-interruption on the bacteria transport behavior in porous media[J]. Journal of Hydrology, 2020: 125677.
[190] 周志华 . 机器学习 机器学习 机器学习 机器学习 [M]. 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 清华大学出版社 , 2016.
[191] ALWOSHEEL A, VAN CRANENBURGH S, CHORUS C G. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis[J]. Journal of Choice Modelling, 2018, 28: 167-182.
[192] HORNIK K, STINCHCOMBE M, WHITE H. MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS[J]. Neural Networks, 1989, 2(5): 359-366.
[193] KŮRKOVá V. Kolmogorov's theorem and multilayer neural networks[J]. Neural Networks, 1992, 5(3): 501-506.
[194] GORMAN R P, SEJNOWSKI T J. Analysis of hidden units in a layered network trained to classify sonar targets[J]. Neural Networks, 1988, 1(1): 75-89.
[195] WEN H, LI L. An upscaled rate law for mineral dissolution in heterogeneous media: The role of time and length scales[J]. Geochimica et Cosmochimica Acta, 2018, 235: 1-20.
[196] ELOSEGUI A, POZO J. Epilithic biomass and metabolism in a north Iberian stream[J]. Aquatic Sciences, 1998, 60(1): 1-16.
[197] MAGID J, DE NEERGAARD A, BRANDT M. Heterogeneous distribution may substantially decrease initial decomposition, long-term microbial growth and N-immobilization from high C-to-N ratio resources[J]. European Journal of Soil Science, 2006, 57(4): 517-529.
[198] REMY N, BOUCHER A, WU J. Applied Geostatistics with SGeMS: A User's Guide[M]. Cambridge: Cambridge University Press, 2009.
[199] YAN Z, LIU C, TODD-BROWN K E, et al. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils[J]. Biogeochemistry, 2016, 131(1-2): 121-134.
[200] FRANZLUEBBERS A J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils[J]. Applied Soil Ecology, 1999, 11(1): 91-101.
[201] DAI Z, WOLFSBERG A, LU Z, et al. Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock[J]. Geophysical Research Letters, 2009, 36(1)
[202] SOLTANIAN M R, RITZI R, DAI Z, et al. Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales[J]. Stochastic Environmental Research and Risk Assessment, 2014, 29(3): 709-726.
[203] CHEN Y-M, ABRIOLA L M, ALVAREZ P J J, et al. Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparisons With experimental measurements[J]. Water Resources Research, 1992, 28(7): 1833-1847.
[204] HUBBARD C E, BARKER J F, VANDEGRIENDT M. Transport and fate of dissolved methanol, methyl-tertiary-butyl-ether, and monoaromatic hydrocarbons in a shallow sand aquifer Appendix H: laboratory biotransformation studies[R]. Washington, D.C.: American Petroleum Institute, 1994.
[205] WADDILL D W, WIDDOWSON M A. Three-dimensional model for subsurface transport and biodegradation[J]. Journal of Environmental Engineering, 1998, 124(4): 336-344.
[206] SCHAPER J L, POSSELT M, BOUCHEZ C, et al. Fate of Trace Organic Compounds in the Hyporheic Zone: Influence of Retardation, the Benthic Biolayer, and Organic Carbon[J]. Environmental Science & Technology, 2019, 53(8): 4224-4234.
[207] HENDRY M J, RANVILLE J R, BOLDT-LEPPIN B E J, et al. Geochemical and transport properties of dissolved organic carbon in a clay-rich aquitard[J]. Water Resources Research, 2003, 39(7)
[208] CUSSLER E. Diffusion[M]. Cambridge: Cambridge University Press, 1997.
[209] GU C, HORNBERGER G M, MILLS A L, et al. Nitrate reduction in streambed sediments: Effects of flow and biogeochemical kinetics[J]. Water Resources Research, 2007, 43(12)
[210] BU X, DAI H, YUAN S, et al. Model-based analysis of dissolved oxygen supply to aquifers within riparian zones during river level fluctuations: Dynamics and influencing factors[J]. Journal of Hydrology, 2021, 598: 126460.
[211] KABALA Z J. Sensitivity analysis of a pumping test on a well with wellbore storage and skin[J]. Advances in Water Resources, 2001, 24(5): 483-504.
[212] HUANG Y-C, YEH H-D. The use of sensitivity analysis in on-line aquifer parameter estimation[J]. Journal of Hydrology, 2007, 335(3): 406-418.
[213] GUPTA S, SRIVASTAVA P, PATIL S A, et al. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges[J]. Bioresource Technology, 2021, 320: 124376.
[214] ABU HASAN H, MUHAMMAD M H, ISMAIL N I. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources[J]. Journal of Water Process Engineering, 2020, 33: 101035.
[215] LI L, STEEFEL C I, KOWALSKY M B, et al. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado[J].Journal of Contaminant Hydrology, 2010, 112(1): 45-63.
[216] FAYBISHENKO B, HAZEN T C, LONG P E, et al. In Situ Long-Term Reductive Bioimmobilization of Cr(VI) in Groundwater Using Hydrogen Release Compound[J]. Environmental Science & Technology, 2008, 42(22): 8478-8485.
[217] LIU Y, LIU C, ZHANG C, et al. Pore and continuum scale study of the effect of subgrid transport heterogeneity on redox reaction rates[J]. Geochimica et Cosmochimica Acta, 2015, 163: 140-155.
[218] JANOT N, LEZAMA PACHECO J S, PHAM D Q, et al. Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry[J]. Environmental Science & Technology, 2016, 50(1): 46-53.
[219] FREEZE R A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media[J]. Water Resources Research, 1975, 11(5): 725-741.
[220] HOEKSEMA R J, KITANIDIS P K. Analysis of the Spatial Structure of Properties of Selected Aquifers[J]. Water Resources Research, 1985, 21(4): 563-572.
[221] FOGG G E. Groundwater Flow and Sand Body Interconnectedness in a Thick, Multiple-Aquifer System[J]. Water Resources Research, 1986, 22(5): 679-694.
[222] CONSTANTZ J. Heat as a tracer to determine streambed water exchanges[J]. Water Resources Research, 2008, 44(4)
[223] MOSLEY M P. Subsurface flow velocities through selected forest soils, South Island, New Zealand[J]. Journal of Hydrology, 1982, 55(1): 65-92.
[224] VOGT T, SCHNEIDER P, HAHN-WOERNLE L, et al. Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling[J]. Journal of Hydrology, 2010, 380(1-2): 154-164.
[225] TAYLOR S W, JAFFé P R. Biofilm growth and the related changes in the physical properties of a porous medium: 1. Experimental investigation[J]. Water Resources Research, 1990, 26(9): 2153-2159.
[226] YAVUZ CORAPCIOGLU M, HARIDAS A. Transport and fate of microorganisms in porous media: A theoretical investigation[J]. Journal of Hydrology, 1984, 72(1): 149-169.
[227] DESHPANDE P A, SHONNARD D R. Modeling the effects of systematic variation in ionic strength on the attachment kinetics of Pseudomonas fluorescens UPER-1 in saturated sand columns[J]. Water Resources Research, 1999, 35(5): 1619-1627.
[228] FOPPEN J W A, SCHIJVEN J F. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions[J]. Water Research, 2006, 40(3): 401-426.
[229] ZHANG M, HE L, JIN X, et al. Flagella and Their Properties Affect the Transport and Deposition Behaviors of Escherichia coli in Quartz Sand[J]. Environmental Science & Technology, 2021, 55(8): 4964-4973.
[230] GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization[J]. SIAM Review, 2005, 47(1): 99-131.
[231] AUSET M, KELLER A A. Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels[J]. Water Resources Research, 2006, 42(12)
[232] BRADFORD S A, BETTAHAR M. Straining, Attachment, and Detachment of Cryptosporidium Oocysts in Saturated Porous Media[J]. Journal of Environmental Quality, 2005, 34(2): 469-478.
[233] MOSTAFA M, VAN GEEL P J. Conceptual Models and Simulations for Biological Clogging in Unsaturated Soils[J]. Vadose Zone Journal, 2007, 6(1): 175-185.
[234] LI X, XU H, GAO B, et al. Transport of a PAH-degrading bacterium in saturated limestone media under various physicochemical conditions: Common and unexpected retention and remobilization behaviors[J]. Journal of Hazardous Materials, 2019, 380: 120858.
[235] KUZNAR Z A, ELIMELECH M. Direct microscopic observation of particle deposition in porous media: Role of the secondary energy minimum[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294(1): 156-162.
[236] TORKZABAN S, BRADFORD S A, VAN GENUCHTEN M T, et al. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining[J]. Journal of Contaminant Hydrology, 2008, 96(1-4): 113-127.
[237] LIU Z, LI J, HONG Z, et al. Effect of Fe/Al Hydroxides on Transport and Retention of Escherichia coli in Saturated Sand Media[J]. Geomicrobiology Journal, 2017, 34(10): 881-888.
[238] BAYAT A E, JUNIN R, MOHSIN R, et al. Influence of clay particles on Al2O3 and TiO2 nanoparticles transport and retention through limestone porous media: measurements and mechanisms[J]. Journal of Nanoparticle Research, 2015, 17(5)
[239] CHEN J, HUBBARD S, RUBIN Y. Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model[J]. Water Resources Research, 2001, 37(6): 1603-1613.
[240] HUBBARD S S, RUBIN Y, MAJER E. Spatial correlation structure estimation using geophysical and hydrogeological data[J]. Water Resources Research, 1999, 35(6): 1809-1825.
[241] HUBBARD S S, CHEN J, PETERSON J, et al. Hydrogeological characterization of the South Oyster bacterial transport site using geophysical data[J]. Water Resources Research, 2001, 37(10): 2431-2456.
[242] LIN D, HU L, BRADFORD S A, et al. Simulation of Colloid Transport and Retention Using a Pore-Network Model With Roughness and Chemical Heterogeneity on Pore Surfaces[J]. Water Resources Research, 2021, 57(2)
[243] TORKZABAN S, HOCKING M, BRADFORD S A, et al. Modeling Virus Transport and Removal during Storage and Recovery in Heterogeneous Aquifers[J]. Journal of Hydrology, 2019, 578
[244] BHATTACHARJEE S, RYAN J N, ELIMELECH M. Virus transport in physically and geochemically heterogeneous subsurface porous media[J]. Journal of Contaminant Hydrology, 2002, 57(3): 161-187.
[245] JOHNSON P R, SUN N, ELIMELECH M. Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements[J]. Environmental Science & Technology, 1996, 30(11): 3284-3293.
[246] KATZOURAKIS V E, CHRYSIKOPOULOS C V. Impact of Spatially Variable Collision Efficiency on the Transport of Biocolloids in Geochemically Heterogeneous Porous Media[J]. Water Resources Research, 2018, 54(6): 3841-3862.
[247] HARVEY R W, KINNER N E, MACDONALD D, et al. Role of physical heterogeneity in the interpretation of small‐scale laboratory and field observations of bacteria, microbial‐sized microsphere, and bromide transport through aquifer sediments[J]. Water Resources Research, 1993, 29(8): 2713-2721.
[248] JOHNSON W P, BLUE K A, LOGAN B E, et al. Modeling Bacterial Detachment During Transport Through Porous Media as a Residence-Time-Dependent Process[J]. Water Resources Research, 1995, 31(11): 2649-2658.
修改评论