题名 | MEDKD: Enhancing Medical Image Classification with Multiple Expert Decoupled Knowledge Distillation for Long-Tail Data |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2023
|
会议名称 | Proceedings of the 14th MICCAI Workshop on Machine Learning in Medical Imaging (MICCAI-MLMI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-45675-6
|
会议录名称 | |
卷号 | 14349 LNCS
|
页码 | 314-324
|
会议日期 | October, 2023
|
会议地点 | Vancouver, Canada
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Medical image classification is a challenging task, particularly when dealing with long-tailed datasets where rare diseases are underrepresented. The imbalanced class distribution in such datasets poses significant challenges in accurately classifying minority classes. Existing methods for alleviating the long-tail problem in medical image classification suffer from limitations such as noise introduction, loss of crucial information, and the need for manual tuning and additional computational resources. In this study, we propose a novel framework called Multiple Expert Decoupled Knowledge Distillation (MEDKD) to tackle the imbalanced class distribution in medical image classification. The knowledge distillation of multiple teacher models can significantly alleviate the class imbalance by partitioning the dataset into several subsets. However, current frameworks of this kind have not yet explored the integration of more advanced distillation methods. Our framework incorporating TCKD and NCKD concepts to improve classification performance. Through comprehensive experiments on publicly available datasets, we evaluate the performance of MEDKD and compare it with state-of-the-art methods. Our results demonstrate remarkable accuracy improvements achieved by the proposed method, highlighting its effectiveness in alleviating the challenges of medical image classification with long-tailed datasets. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Basic Research Program[JCYJ20200925153847004]
; National Natural Science Foundation of China[62071210]
; Shenzhen Science and Technology Program[RCYX202106091030 56042]
; Shenzhen Science and Technology Innovation Committee Program[KCXFZ20201221 17340001]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:001109644300032
|
Scopus记录号 | 2-s2.0-85175975339
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/602173 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong 3.School of Biomedical Engineering,University of British Columbia,Vancouver,Canada 4.Jiaxing Research Institute,Southern University of Science and Technology,Jiaxing,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系; 南方科技大学 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Fuheng,Li,Sirui,Wei,Tianyunxi,et al. MEDKD: Enhancing Medical Image Classification with Multiple Expert Decoupled Knowledge Distillation for Long-Tail Data[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023:314-324.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论