中文版 | English
题名

MEDKD: Enhancing Medical Image Classification with Multiple Expert Decoupled Knowledge Distillation for Long-Tail Data

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2023
会议名称
Proceedings of the 14th MICCAI Workshop on Machine Learning in Medical Imaging (MICCAI-MLMI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-45675-6
会议录名称
卷号
14349 LNCS
页码
314-324
会议日期
October, 2023
会议地点
Vancouver, Canada
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

Medical image classification is a challenging task, particularly when dealing with long-tailed datasets where rare diseases are underrepresented. The imbalanced class distribution in such datasets poses significant challenges in accurately classifying minority classes. Existing methods for alleviating the long-tail problem in medical image classification suffer from limitations such as noise introduction, loss of crucial information, and the need for manual tuning and additional computational resources. In this study, we propose a novel framework called Multiple Expert Decoupled Knowledge Distillation (MEDKD) to tackle the imbalanced class distribution in medical image classification. The knowledge distillation of multiple teacher models can significantly alleviate the class imbalance by partitioning the dataset into several subsets. However, current frameworks of this kind have not yet explored the integration of more advanced distillation methods. Our framework incorporating TCKD and NCKD concepts to improve classification performance. Through comprehensive experiments on publicly available datasets, we evaluate the performance of MEDKD and compare it with state-of-the-art methods. Our results demonstrate remarkable accuracy improvements achieved by the proposed method, highlighting its effectiveness in alleviating the challenges of medical image classification with long-tailed datasets.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Basic Research Program[JCYJ20200925153847004] ; National Natural Science Foundation of China[62071210] ; Shenzhen Science and Technology Program[RCYX202106091030 56042] ; Shenzhen Science and Technology Innovation Committee Program[KCXFZ20201221 17340001]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001109644300032
Scopus记录号
2-s2.0-85175975339
来源库
Scopus
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602173
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong
3.School of Biomedical Engineering,University of British Columbia,Vancouver,Canada
4.Jiaxing Research Institute,Southern University of Science and Technology,Jiaxing,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系;  南方科技大学
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhang,Fuheng,Li,Sirui,Wei,Tianyunxi,et al. MEDKD: Enhancing Medical Image Classification with Multiple Expert Decoupled Knowledge Distillation for Long-Tail Data[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023:314-324.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Fuheng]的文章
[Li,Sirui]的文章
[Wei,Tianyunxi]的文章
百度学术
百度学术中相似的文章
[Zhang,Fuheng]的文章
[Li,Sirui]的文章
[Wei,Tianyunxi]的文章
必应学术
必应学术中相似的文章
[Zhang,Fuheng]的文章
[Li,Sirui]的文章
[Wei,Tianyunxi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。