中文版 | English
题名

FallDeWideo: Vision-Aided Wireless Sensing Dataset for Fall Detection with Commodity Wi-Fi Devices

作者
DOI
发表日期
2023-10-06
会议录名称
页码
7-12
摘要
Falling is one of the most dangerous events for the elderly and one of the most pressing public concern, which calls for an accurate, efficient, ubiquitous, cost-effective and privacy-preserving fall detection system to mitigate the negative consequences. Wi-Fi sensing-based method is considered as a potential technique to meet such needs. Existing solutions simply treat fall detection simply as a binary classification task, which leads to interpretability risks. To address this issue, we present FallDeWideo, the first multi-modal dataset dedicated to fall detection, comprising Wi-Fi CSI data and videos recorded during various kinds of events. We provide benchmark model for this dataset as well. Specifically, we train a CSI-based human pose estimation model (HPE) using video data as the supervision modality. The trained model can estimate human pose solely on Wi-Fi channel state information (CSI), and then detects whether a fall event occurs. This pipeline extracts rich information from CSI data and detects fall with more than just an alarm, but attached with an HPE, which allows more refined management of fall risks. We envision that this dataset will contribute to the wireless sensing research coomunity with respect to healthcare, action recognition, and cross-modal sensing. Codes and link to the dataset is available at https://github.com/shawnnn3di/falldewideo.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20234615045453
EI主题词
Channel state information ; Cost effectiveness ; Fall detection ; Wireless local area networks (WLAN)
EI分类号
Computer Software, Data Handling and Applications:723 ; Codes and Standards:902.2 ; Industrial Economics:911.2 ; Accidents and Accident Prevention:914.1
Scopus记录号
2-s2.0-85176111318
来源库
Scopus
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602179
专题南方科技大学
作者单位
1.The Chinese University of Hong Kong,Shenzhen,Shenzhen,China
2.Tongji University,Shanghai,China
3.Shenzhen Research Institute of Big Data,Shenzhen,China
4.Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Cai,Zhijie,Chen,Tingwei,Zhou,Fujia,et al. FallDeWideo: Vision-Aided Wireless Sensing Dataset for Fall Detection with Commodity Wi-Fi Devices[C],2023:7-12.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Zhijie]的文章
[Chen,Tingwei]的文章
[Zhou,Fujia]的文章
百度学术
百度学术中相似的文章
[Cai,Zhijie]的文章
[Chen,Tingwei]的文章
[Zhou,Fujia]的文章
必应学术
必应学术中相似的文章
[Cai,Zhijie]的文章
[Chen,Tingwei]的文章
[Zhou,Fujia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。