中文版 | English
题名

State-space modeling for electrochemical performance of Li-ion batteries with physics-informed deep operator networks

作者
通讯作者Zhang,Dongxiao
发表日期
2023-12-20
DOI
发表期刊
EISSN
2352-152X
卷号73
摘要
Online estimation of unobservable internal states is significant for safe operation of Li-ion batteries, and it constitutes one of the main functions of battery management system (BMS). The next-generation BMS expects model-based state estimation, especially with electrochemical models, which are accurate but often costly for solving. Therefore, it is required to build more easily executable state-space representation of electrochemical models for online state estimation. However, the traditional numerical methods for time discretization are relatively complicated, and the discretized system is not very flexible in modifying predictive time intervals. To address such issues, we introduce the concept of physics-informed operator learning for state-space modeling. Specifically, we propose an architecture, termed the physics-informed multiple-input operator network (PI-MIONet), to reformulate the state-space representation of the extended single particle (eSP) model. In this work, the PI-MIONet takes the Li-ion concentration of the whole electrode particle and current densities at the current time as the input functions, and predicts Li-ion concentration at any spatial-temporal location, which means that the forward predictions can be realized with user-defined step size. In addition, due to the capability of taking discretized functions as inputs, the PI-MIONet can be used for estimating states in the form of long vectors, and it can be conducted very efficiently, which makes it highly suitable for online applications in BMS. We verify the predictive performance of PI-MIONet through several synthetic experiments, and successfully apply it to the estimation of Li-ion concentration across the full particle with unscented Kalman filter algorithms.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:001097372000001
EI入藏号
20234314938740
EI主题词
Battery management systems ; Concentration (process) ; Deep learning ; Ions ; Learning systems ; Numerical methods ; State estimation ; State space methods
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Secondary Batteries:702.1.2 ; Control Systems:731.1 ; Mathematics:921 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85174440304
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602235
专题工学院_环境科学与工程学院
作者单位
1.Eastern Institute for Advanced Study,Eastern Institute of Technology,Ningbo,Zhejiang,315200,China
2.Department of Mechanical Engineering,The Hong Kong Polytechnic University,Kowloon,Hung Hom, Hong Kong SAR,Hong Kong
3.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
4.Department of Mathematics and Theories,Peng Cheng Laboratory,Shenzhen,Guangdong,518000,China
5.Department of Automation,University of Science and Technology of China,Hefei,Anhui,230027,China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zheng,Qiang,Yin,Xiaoguang,Zhang,Dongxiao. State-space modeling for electrochemical performance of Li-ion batteries with physics-informed deep operator networks[J]. Journal of Energy Storage,2023,73.
APA
Zheng,Qiang,Yin,Xiaoguang,&Zhang,Dongxiao.(2023).State-space modeling for electrochemical performance of Li-ion batteries with physics-informed deep operator networks.Journal of Energy Storage,73.
MLA
Zheng,Qiang,et al."State-space modeling for electrochemical performance of Li-ion batteries with physics-informed deep operator networks".Journal of Energy Storage 73(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Qiang]的文章
[Yin,Xiaoguang]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Zheng,Qiang]的文章
[Yin,Xiaoguang]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Zheng,Qiang]的文章
[Yin,Xiaoguang]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。