中文版 | English
题名

An efficient many objective optimization algorithm with few parameters

作者
通讯作者Liu,Jialin
发表日期
2023-12-01
DOI
发表期刊
ISSN
2210-6502
卷号83
摘要
During the past two decades, numerous many-objective optimization evolutionary algorithms (MaOEAs) have been proposed to tackle the challenges traditional multi-objective evolutionary algorithms face, that is to deal with abundant non-dominated solutions and low selection pressure. Specifically, a series of sophisticated selection strategies have been adopted, some of which need additional pre-defined parameters or a significant amount of extra computation time, which retards their applications in real life. In this paper, we propose an efficient indicator-based MaOEA with few parameters, SDE-MOEA, that uses an adaptive combination of commonly used selection methods to improve search efficiency based on SDE. SDE addresses situations where SDE cannot distinguish individuals with the same SDE values. The adaptive selection method dynamically selects between one-time and iterative selection methods at different stages of evolution to improve the search efficiency. Furthermore, apart from the four parameters for generating offspring, our proposed SDE-MOEA does not introduce additional parameters. We conduct experimental studies to compare SDE-MOEA with 11 state-of-the-art algorithms, including 2REA, I, θ-DEA, LMPFE, CVEA3, SRA, MOEA/DD, IBEA, Two_Arch2, NSGA-III, and SPEA2SDE using four representative performance indicators (HV, SP, PD and GD) on MaF benchmark with 5, 8, 10, and 15 objectives. Experimental studies demonstrate that, compared to the algorithms, SDE-MOEA achieves better HV and competitive convergence and uniformity performance, while requiring few parameters. It means that SDE-MOEA can find a solution set with better convergence and uniformity to help decision-makers understand the solved problems. Furthermore, SDE-MOEA loses little spreadability since a better convergence often leads to a worse spread.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:001101587000001
EI入藏号
20234314961205
EI主题词
Benchmarking ; Decision making ; Efficiency ; Evolutionary algorithms ; Iterative methods ; Parameter estimation
EI分类号
Management:912.2 ; Production Engineering:913.1 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85174729594
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602269
专题工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous System,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.CERCIA,School of Computer Science,University of Birmingham,Birmingham,B15 2TT,United Kingdom
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位南方科技大学;  计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang,Qingquan,Liu,Jialin,Yao,Xin. An efficient many objective optimization algorithm with few parameters[J]. Swarm and Evolutionary Computation,2023,83.
APA
Zhang,Qingquan,Liu,Jialin,&Yao,Xin.(2023).An efficient many objective optimization algorithm with few parameters.Swarm and Evolutionary Computation,83.
MLA
Zhang,Qingquan,et al."An efficient many objective optimization algorithm with few parameters".Swarm and Evolutionary Computation 83(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Qingquan]的文章
[Liu,Jialin]的文章
[Yao,Xin]的文章
百度学术
百度学术中相似的文章
[Zhang,Qingquan]的文章
[Liu,Jialin]的文章
[Yao,Xin]的文章
必应学术
必应学术中相似的文章
[Zhang,Qingquan]的文章
[Liu,Jialin]的文章
[Yao,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。