中文版 | English
题名

Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets

作者
发表日期
2023-12-01
DOI
发表期刊
ISSN
0960-1481
EISSN
1879-0682
卷号219
摘要
The widespread adoption of photovoltaic (PV) technology for renewable energy necessitates accurate segmentation of PV panels to estimate installation capacity. However, achieving highly efficient and precise segmentation methods remains a pressing challenge. Recent advancements in artificial intelligence and remote sensing techniques have shown promise in PV segmentation. Nevertheless, real-world scenarios introduce complexities such as diverse sensing platforms, sensors, panel categories, and testing regions. These factors contribute to resolution, size, and foreground-background class imbalances, impeding accurate and generalized PV panel segmentation over large areas. To address these challenges, we propose GenPV, a deep learning model that leverages data distribution analysis and PV panel characteristics to enhance segmentation accuracy and generalization. GenPV employs a multi-scale feature learning approach, utilizing an enhanced feature pyramid network to fuse data features from multiple resolutions, effectively addressing resolution imbalance. Moreover, inductive learning is employed through a multitask approach, facilitating the detection and identification of both small and large-sized PV panels to mitigate size imbalance. To address significant class imbalance in PV panel recognition tasks, we integrate the Focal loss function for effective hard sample mining. Through experimental evaluation conducted in Heilbronn, Germany, our proposed method demonstrates superior performance compared to state-of-the-art approaches in PV panel segmentation. The results exhibit progressively higher accuracy and improved generalization capability. These findings highlight the potential of our method to serve as an advanced and practical tool for PV segmentation in the renewable energy field.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:001102916200001
EI入藏号
20234314938072
EI主题词
Deep learning ; Learning systems ; Renewable energy resources ; Semantic Segmentation ; Semantics ; Solar panels
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Energy Resources and Renewable Energy Issues:525.1 ; Solar Cells:702.3 ; Artificial Intelligence:723.4
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85174461392
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602280
专题工学院_计算机科学与工程系
作者单位
1.Department of Building Environment and Energy Engineering,The Hong Kong Polytechnic University,Kowloon,Hong Kong
2.Center for Spatial Information Science,University of Tokyo,Kashiwa,277-8568,Japan
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
4.Department of Power and Electrical Engineering,Northwest A&F University,Yangling,712100,China
5.School of Computer Science,South China Normal University,China
6.College of Metropolitan Transportation,Beijing University of Technology,Beijing,100124,China
7.Transport Studies,Imperial College London,London,SW7 2AZ,United Kingdom
8.School of Architecture and Cities,University of Westminster,London,NW1 5LS,United Kingdom
9.School of Urban Planning and Design,Peking University,Shenzhen,No.2199 Lishui Road, Nanshan District, Guangdong,518055,China
推荐引用方式
GB/T 7714
Guo,Zhiling,Zhuang,Zhan,Tan,Hongjun,et al. Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets[J]. Renewable Energy,2023,219.
APA
Guo,Zhiling.,Zhuang,Zhan.,Tan,Hongjun.,Liu,Zhengguang.,Li,Peiran.,...&Yan,Jinyue.(2023).Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets.Renewable Energy,219.
MLA
Guo,Zhiling,et al."Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets".Renewable Energy 219(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo,Zhiling]的文章
[Zhuang,Zhan]的文章
[Tan,Hongjun]的文章
百度学术
百度学术中相似的文章
[Guo,Zhiling]的文章
[Zhuang,Zhan]的文章
[Tan,Hongjun]的文章
必应学术
必应学术中相似的文章
[Guo,Zhiling]的文章
[Zhuang,Zhan]的文章
[Tan,Hongjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。