中文版 | English
题名

NUTS-BSNN: A non-uniform time-step binarized spiking neural network with energy-efficient in-memory computing macro

作者
发表日期
2023-12-01
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号560
摘要
This work introduces a network architecture NUTS-BSNN: A Non-uniform Time-step Binarized Spiking Neural Network. NUTS-BSNN is a fully binarized spiking neural network with all binary weights, including the input and output layers. In the input and output layers, the weights are represented as stochastic series of numbers, while in the hidden layers, they are approximated to binary values for using simple XNOR-based computations. To compensate for the information loss due to binarization, we increased the convolutions at the input layer sequentially computed over multiple time-steps. The results from these operations are accumulated before generating spikes for the subsequent layers to increase the overall performance. We chose 14 time-steps for accumulation to achieve a good tradeoff between performance and inference latency. The proposed technique was evaluated using three datasets by direct training method and using a surrogate gradient algorithm. We achieved classification accuracies of 93.25%, 88.71%, and 70.31% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, respectively. Further, we present an in-memory computing architecture for NUTS-BSNN, which limits resource and power consumption for hardware implementation.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
EI入藏号
20234114850516
EI主题词
Classification (of information) ; Energy efficiency ; Memory architecture ; Multilayer neural networks ; Stochastic systems
EI分类号
Energy Conservation:525.2 ; Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722 ; Control Systems:731.1 ; Information Sources and Analysis:903.1 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85173565269
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602297
专题工学院_深港微电子学院
作者单位
1.Academy of Military Science and Technology,Hanoi,Viet Nam
2.Nara Institute of Science and Technology,Japan
3.University College Dublin,Ireland
4.School of Microelectronics,Southern University of Science and Technology,Shenzhen,China
5.Faculty of Radio-Electronics – Le Quy Don Technical University,Hanoi,Viet Nam
推荐引用方式
GB/T 7714
Dinh,Van Ngoc,Bui,Ngoc My,Nguyen,Van Tinh,et al. NUTS-BSNN: A non-uniform time-step binarized spiking neural network with energy-efficient in-memory computing macro[J]. Neurocomputing,2023,560.
APA
Dinh,Van Ngoc,Bui,Ngoc My,Nguyen,Van Tinh,John,Deepu,Lin,Long Yang,&Trinh,Quang Kien.(2023).NUTS-BSNN: A non-uniform time-step binarized spiking neural network with energy-efficient in-memory computing macro.Neurocomputing,560.
MLA
Dinh,Van Ngoc,et al."NUTS-BSNN: A non-uniform time-step binarized spiking neural network with energy-efficient in-memory computing macro".Neurocomputing 560(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dinh,Van Ngoc]的文章
[Bui,Ngoc My]的文章
[Nguyen,Van Tinh]的文章
百度学术
百度学术中相似的文章
[Dinh,Van Ngoc]的文章
[Bui,Ngoc My]的文章
[Nguyen,Van Tinh]的文章
必应学术
必应学术中相似的文章
[Dinh,Van Ngoc]的文章
[Bui,Ngoc My]的文章
[Nguyen,Van Tinh]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。