中文版 | English
题名

Deep transfer learning for groundwater flow in heterogeneous aquifers using a simple analytical model

作者
通讯作者Liang,Xiuyu
发表日期
2023-11-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号626
摘要
Deep learning models exhibit good interpolating ability, but their performance is often hindered by the scarcity of data in groundwater problems. Analytical models (solutions) provide a first-order physical principle for groundwater flow, but they are only applicable under specific conditions, such as when the aquifer is homogeneous. This study introduces a novel framework for deep transfer learning that integrates the strengths of both methods and overcomes their limitations. Specifically, we propose a deep learning model guided by a simple analytical model to predict groundwater flow in heterogeneous aquifers. It differs from previous deep learning model by incorporating the knowledge from the simple analytical model and utilizing transfer learning technique to improve the prediction in relatively complicated problems where the analytical model is not applicable. The model is tested against the traditional deep learning model Deep Back Propagation Neural Network (DBPNN) in the scenarios with unknown hydraulic conductivity fields. The results show that the proposed model significantly improve the accuracy of hydraulic head predictions by fusing analytical knowledge with neural networks. The hydraulic conductivity mainly affects the parameters of the shallow layers in the neural network, which enables the use of transfer learning techniques in more complex problems. In all test scenarios, the prediction errors of the proposed model are much smaller than those of the DBPNN. Additionally, the proposed model performs satisfactorily even with limited training data.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National key research and development program[2019YFC1803903] ; National Natural Science Foundation of China["41977165","42172275"] ; Natural Science Foundation of Shenzhen["20220814221815001","JCYJ20190809142203633"] ; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control[2017B030301012]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:001107520500001
出版者
EI入藏号
20234214921224
EI主题词
Aquifers ; Backpropagation ; Deep learning ; Forecasting ; Groundwater flow ; Groundwater resources ; Hydraulic conductivity ; Hydrogeology ; Learning systems ; Multilayer neural networks
EI分类号
Groundwater:444.2 ; Ergonomics and Human Factors Engineering:461.4 ; Geology:481.1 ; Fluid Flow, General:631.1 ; Hydraulics:632.1 ; Artificial Intelligence:723.4 ; Mathematics:921
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85174334488
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602325
专题工学院_环境科学与工程学院
作者单位
1.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
2.Group of Geo Modelling and Artificial Intelligence,School of Civil Engineering,University of Leeds,Leeds,LS2 9JT,United Kingdom
3.College of Environment and Resource Science,Zhejiang University,Hangzhou,Zhejiang,310058,China
4.Zhejiang Ecological Civilization Academy,Anji,Zhejiang,313399,China
5.Department of Earth and Environmental Sciences,University of Iowa,Iowa City,52242,United States
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zhang,Jiangwei,Liang,Xiuyu,Zeng,Lingzao,et al. Deep transfer learning for groundwater flow in heterogeneous aquifers using a simple analytical model[J]. Journal of Hydrology,2023,626.
APA
Zhang,Jiangwei.,Liang,Xiuyu.,Zeng,Lingzao.,Chen,Xiaohui.,Ma,Enze.,...&Zhang,You Kuan.(2023).Deep transfer learning for groundwater flow in heterogeneous aquifers using a simple analytical model.Journal of Hydrology,626.
MLA
Zhang,Jiangwei,et al."Deep transfer learning for groundwater flow in heterogeneous aquifers using a simple analytical model".Journal of Hydrology 626(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Jiangwei]的文章
[Liang,Xiuyu]的文章
[Zeng,Lingzao]的文章
百度学术
百度学术中相似的文章
[Zhang,Jiangwei]的文章
[Liang,Xiuyu]的文章
[Zeng,Lingzao]的文章
必应学术
必应学术中相似的文章
[Zhang,Jiangwei]的文章
[Liang,Xiuyu]的文章
[Zeng,Lingzao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。