中文版 | English
题名

Synthetic data & the future of Women's Health: A synergistic relationship

作者
通讯作者Phiri,Peter
发表日期
2023-11-01
DOI
发表期刊
ISSN
1386-5056
EISSN
1872-8243
卷号179
摘要
Objectives: The aim of this perspective is to report the use of synthetic data as a viable method in women's health given the current challenges linked to obtaining life-course data within a short period of time and accessing electronic healthcare data. Methods: We used a 3-point perspective method to report an overview of data science, common applications, and ethical implications. Results: There are several ethical challenges linked to using real-world data, consequently, generating synthetic data provides an alternative method to conduct comprehensive research when used effectively. The use of clinical characteristics to develop synthetic data is a useful method to consider. Aligning this data as closely as possible to the clinical phenotype would enable researchers to provide data that is very similar to that of the real-world. Discussion: Population diversity and disease characterisation is important to optimally use data science. There are several artificial intelligence techniques that can be used to develop synthetic data. Conclusion: Synthetic data demonstrates promise and versatility when used efficiently aligned to clinical problems. Therefore, exploring this option as a viable method in women's health, in particular for epidemiology may be useful.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science ; Health Care Sciences & Services ; Medical Informatics
WOS类目
Computer Science, Information Systems ; Health Care Sciences & Services ; Medical Informatics
WOS记录号
WOS:001090925500001
出版者
EI入藏号
20234114855015
EI主题词
Data Science ; E-learning ; Ethical technology ; Population statistics
EI分类号
Artificial Intelligence:723.4 ; Engineering Professional Aspects:901.1 ; Information Sources and Analysis:903.1
ESI学科分类
CLINICAL MEDICINE
Scopus记录号
2-s2.0-85173286317
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/602331
专题理学院_统计与数据科学系
作者单位
1.Research & Innovation Department,Southern Health NHS Foundation Trust,Southampton,SO40 2RZ,United Kingdom
2.School of Psychology,Faculty of Environmental and Life Sciences,University of Southampton,Southampton,SO17 1BJ,United Kingdom
3.Department of Mathematics,University of Southampton,Southampton,SO17 1BJ,United Kingdom
4.Female Pelvic Medicine and Reconstructive Surgery,University College London,London,WC1E 6BT,United Kingdom
5.University College London Hospitals NHS Foundation Trust,London,NW1 2PG,United Kingdom
6.Sultan Qaboos University,College of Medicine and Health Sciences,Muscat,Oman
7.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,518055,China
8.Alan Turing Institute,London,96 Euston Road, NW1 2DB,United Kingdom
推荐引用方式
GB/T 7714
Delanerolle,Gayathri,Phiri,Peter,Cavalini,Heitor,et al. Synthetic data & the future of Women's Health: A synergistic relationship[J]. International Journal of Medical Informatics,2023,179.
APA
Delanerolle,Gayathri.,Phiri,Peter.,Cavalini,Heitor.,Benfield,David.,Shetty,Ashish.,...&Zemkoho,Alain.(2023).Synthetic data & the future of Women's Health: A synergistic relationship.International Journal of Medical Informatics,179.
MLA
Delanerolle,Gayathri,et al."Synthetic data & the future of Women's Health: A synergistic relationship".International Journal of Medical Informatics 179(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Delanerolle,Gayathri]的文章
[Phiri,Peter]的文章
[Cavalini,Heitor]的文章
百度学术
百度学术中相似的文章
[Delanerolle,Gayathri]的文章
[Phiri,Peter]的文章
[Cavalini,Heitor]的文章
必应学术
必应学术中相似的文章
[Delanerolle,Gayathri]的文章
[Phiri,Peter]的文章
[Cavalini,Heitor]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。