中文版 | English
题名

Radar Emitter Signal Detection with Convolutional Neural Network

作者
DOI
发表日期
2019-10-01
ISBN
978-1-7281-4779-6
会议录名称
页码
48-51
会议日期
18-20 Oct. 2019
会议地点
Jinan, China
出版者
摘要
In this paper, we propose a deep convolutional neural network (CNN) based automatic detection algorithm for recognizing radar emitter signals. The algorithm leverages on the structure estimation power of deep CNN and the capability of time-frequency image processing for radio signal representation. We transform raw radio signals into time-frequency image using the Choi-Williams distribution function. We compare the proposed method with Belief Propagation (BP) and Support Vector Machine (SVM) based methods in terms of recognition accuracy versus signal-to-noise-ratio. The experiments demonstrate that the proposed CNN network with time-frequency image processing achieves very competitive results on the testing datasets.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20200408063168
EI主题词
Backpropagation ; Convolution ; Deep neural networks ; Distribution functions ; Frequency estimation ; Image processing ; Neural networks ; Radar imaging ; Radar transmitters ; Signal to noise ratio ; Support vector machines ; Tracking radar
EI分类号
Information Theory and Signal Processing:716.1 ; Radar Systems and Equipment:716.2 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85078575699
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8935926
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/60397
专题工学院_电子与电气工程系
前沿与交叉科学研究院
作者单位
1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen,11849160,China
2.Southern University of Science and Technology,Academy for Advanced Interdisciplinary Studies,Shenzhen,China
3.Southern University of Science and Technology,Shenzhen Engineering Laboratory of Intelligent Information Processing for IoT,Shenzhen,China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Liu,Zhenrong,Shi,Yankun,Zeng,Yuan,et al. Radar Emitter Signal Detection with Convolutional Neural Network[C]:Institute of Electrical and Electronics Engineers Inc.,2019:48-51.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Zhenrong]的文章
[Shi,Yankun]的文章
[Zeng,Yuan]的文章
百度学术
百度学术中相似的文章
[Liu,Zhenrong]的文章
[Shi,Yankun]的文章
[Zeng,Yuan]的文章
必应学术
必应学术中相似的文章
[Liu,Zhenrong]的文章
[Shi,Yankun]的文章
[Zeng,Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。