题名 | Radar Emitter Signal Detection with Convolutional Neural Network |
作者 | |
DOI | |
发表日期 | 2019-10-01
|
ISBN | 978-1-7281-4779-6
|
会议录名称 | |
页码 | 48-51
|
会议日期 | 18-20 Oct. 2019
|
会议地点 | Jinan, China
|
出版者 | |
摘要 | In this paper, we propose a deep convolutional neural network (CNN) based automatic detection algorithm for recognizing radar emitter signals. The algorithm leverages on the structure estimation power of deep CNN and the capability of time-frequency image processing for radio signal representation. We transform raw radio signals into time-frequency image using the Choi-Williams distribution function. We compare the proposed method with Belief Propagation (BP) and Support Vector Machine (SVM) based methods in terms of recognition accuracy versus signal-to-noise-ratio. The experiments demonstrate that the proposed CNN network with time-frequency image processing achieves very competitive results on the testing datasets. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20200408063168
|
EI主题词 | Backpropagation
; Convolution
; Deep neural networks
; Distribution functions
; Frequency estimation
; Image processing
; Neural networks
; Radar imaging
; Radar transmitters
; Signal to noise ratio
; Support vector machines
; Tracking radar
|
EI分类号 | Information Theory and Signal Processing:716.1
; Radar Systems and Equipment:716.2
; Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85078575699
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8935926 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/60397 |
专题 | 工学院_电子与电气工程系 前沿与交叉科学研究院 |
作者单位 | 1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen,11849160,China 2.Southern University of Science and Technology,Academy for Advanced Interdisciplinary Studies,Shenzhen,China 3.Southern University of Science and Technology,Shenzhen Engineering Laboratory of Intelligent Information Processing for IoT,Shenzhen,China |
第一作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Liu,Zhenrong,Shi,Yankun,Zeng,Yuan,et al. Radar Emitter Signal Detection with Convolutional Neural Network[C]:Institute of Electrical and Electronics Engineers Inc.,2019:48-51.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论