中文版 | English
题名

Cross-Subject Classification of Spoken Mandarin Vowels and Tones with EEG Signals: A Study of End-to-End CNN with Fine-Tuning

作者
DOI
发表日期
2023-10-31
会议名称
Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC)
ISSN
2640-009X
ISBN
979-8-3503-0068-0
会议录名称
页码
535-539
会议日期
31 Oct.-3 Nov. 2023
会议地点
Taipei, Taiwan
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Direct speech brain-computer interface (DS-BCI) is an ideal way for speech communication by decoding signals collected from the brain. Electroencephalogram (EEG) has gained widespread use in DS-BCI studies due to its simplicity of operation and high temporal resolution. However, as human brain exhibits considerable inter-individual variability, classification models trained on the basis of data from one subject may not generalise well to other individuals, which is a major challenge in existing EEG signal classification studies. In this paper, the cross-subject classification performance of spoken Mandarin speech with EEG signals was investigated by using an end-to-end convolutional neural network (CNN) model pre-trained on the source data and fine-tuned on the target data. The raw EEG signals were directly used as the input to the model without using extracted features. In addition, adding Gaussian noise was used as the data augmentation method in order to deal with the unbalanced dataset. The proposed method was tested on a collected EEG dataset of spoken Mandarin speech, including vowel classification and tone classification tasks. The average classification accuracies of four vowels and four tones were 63.1% and 51.7% respectively. The average accuracy of tone classification was significantly improved compared with the machine learning and subject-dependent methods. The results of this work showed the potential of the fine-tuning based CNN model in the cross-subject studies of EEG decoding.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[61971212]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:001108741800085
EI入藏号
20235115257048
EI主题词
Biomedical signal processing ; Brain computer interface ; Convolutional neural networks ; Decoding ; Electroencephalography ; Gaussian noise (electronic) ; Linguistics ; Neural network models ; Speech communication ; Tuning
EI分类号
Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Computer Peripheral Equipment:722.2 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Speech:751.5 ; Information Sources and Analysis:903.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10317100
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/609942
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.University of Macau, Macau, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Xinyu Wang,Mingtao Li,Hao Li,et al. Cross-Subject Classification of Spoken Mandarin Vowels and Tones with EEG Signals: A Study of End-to-End CNN with Fine-Tuning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:535-539.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xinyu Wang]的文章
[Mingtao Li]的文章
[Hao Li]的文章
百度学术
百度学术中相似的文章
[Xinyu Wang]的文章
[Mingtao Li]的文章
[Hao Li]的文章
必应学术
必应学术中相似的文章
[Xinyu Wang]的文章
[Mingtao Li]的文章
[Hao Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。