中文版 | English
题名

Intelligent Stethoscope using Full Self-Attention Mechanism for Abnormal Respiratory Sound Recognition

作者
DOI
发表日期
2023
ISSN
2641-3590
ISBN
979-8-3503-1051-1
会议录名称
页码
1-4
会议日期
15-18 Oct. 2023
会议地点
Pittsburgh, PA, USA
摘要
Machine learning automates the recognition of abnormal respiratory sounds and pulmonary diseases for wireless stethoscopes. However, most learning-based methods have unbalanced performance between low sensitivity (SEN) and high specificity (SPE). Recently, the full self-attention mechanism-based Transformer made significant progress in various medical tasks, but its role in respiratory sound recognition still remains unknown. It can extract the contextual information from segments with arbitrary length in a signal, especially with long-range dependencies. This is typically suitable for mining the pattern of temporally-continuous pathological respiratory sounds, including stridor, wheezes, and rhonchi. Thus in this paper, we explore the feasibility of using full self-attention mechanism of Audio Spectrogram Transformer (AST) to improve the performance of respiratory sound recognition, where FNN, CNN and AST are benchmarked on the dataset of ICBHI 2017. In our proposed framework, the input samples are generated by a new respiratory cycle-based segmentation in order to preserve the consistency of input representation; a dual-input AST model is designed to enhance the robustness to disturbances by extracting the complementary information between the spectrograms and log Mel spectrograms. Extensive experiments show that AST outperforms other methods in the task of respiratory sound recognition. Moreover, the proposed respiratory cycle-based segmentation considerably improves SEN by almost 10%.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001107519300043
EI入藏号
20235015211200
EI主题词
Spectrographs
EI分类号
Optical Devices and Systems:741.3 ; Acoustic Waves:751.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10313454
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/609945
专题工学院_生物医学工程系
作者单位
1.Department of Biomedical Engineering, Southern University of Science and Technology, China
2.Department of Thoracic Surgery, The Third People’s Hospital of Shenzhen, China
第一作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Changyi Wu,Dongmin Huang,Xiaoting Tao,et al. Intelligent Stethoscope using Full Self-Attention Mechanism for Abnormal Respiratory Sound Recognition[C],2023:1-4.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Changyi Wu]的文章
[Dongmin Huang]的文章
[Xiaoting Tao]的文章
百度学术
百度学术中相似的文章
[Changyi Wu]的文章
[Dongmin Huang]的文章
[Xiaoting Tao]的文章
必应学术
必应学术中相似的文章
[Changyi Wu]的文章
[Dongmin Huang]的文章
[Xiaoting Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。