中文版 | English
题名

Construct New Graphs Using Information Bottleneck Against Property Inference Attacks

作者
DOI
发表日期
2023-05-28
会议名称
IEEE International Conference on Communications (IEEE ICC)
ISSN
1938-1883
ISBN
978-1-5386-7463-5
会议录名称
卷号
2023-May
页码
765-770
会议日期
28 May-1 June 2023
会议地点
Rome, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Graphs provide a unique representation of real-world data. However, recent studies found that inference attacks can extract private property information of graph data from trained graph neural networks (GNNs), which arouses privacy concerns about graph data, especially in collaborative learning systems where model information is more accessible. While there has been a few research efforts on the property inference attacks against GNNs, how to defend against such attacks has seldom been studied. In this paper, we propose to leverage the information bottleneck (IB) principle to defend against the property inference attacks. Particularly, we involve a threat model, where the attacker can extract graph property from the graph embedding developed by GNNs. To defend against the attacks, we use IB to construct new graph structures from the original graphs. The change in graph structures enables the new graphs to contain less information related to the property information of the original graphs, making it harder for attackers to infer property information of the original graphs from the graph embeddings. Meantime, the IB principle enables task-relevant information to be sufficiently contained in the new graph, enabling GNNs to develop accurate predictions. The experimental results demonstrate the efficacy of the proposed approach in resisting property inference attacks and developing accurate predictions.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
WOS研究方向
Telecommunications
WOS类目
Telecommunications
WOS记录号
WOS:001094862600123
EI入藏号
20234815114442
EI主题词
Graph embeddings ; Graph structures ; Graphic methods
EI分类号
Database Systems:723.3 ; Artificial Intelligence:723.4
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10279148
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/609964
专题南方科技大学
作者单位
1.School of Computer Science, University of Technology Sydney, Sydney, Australia
2.Dept. of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Chenhan Zhang,Zhiyi Tian,James J.Q. Yu,et al. Construct New Graphs Using Information Bottleneck Against Property Inference Attacks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:765-770.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chenhan Zhang]的文章
[Zhiyi Tian]的文章
[James J.Q. Yu]的文章
百度学术
百度学术中相似的文章
[Chenhan Zhang]的文章
[Zhiyi Tian]的文章
[James J.Q. Yu]的文章
必应学术
必应学术中相似的文章
[Chenhan Zhang]的文章
[Zhiyi Tian]的文章
[James J.Q. Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。