中文版 | English
题名

Deep Learning-Empowered Predictive Precoder Design for OTFS Transmission in URLLC

作者
DOI
发表日期
2023-05-28
会议名称
IEEE International Conference on Communications (IEEE ICC)
ISSN
1938-1883
ISBN
978-1-5386-7463-5
会议录名称
卷号
2023-May
页码
5651-5657
会议日期
28 May-1 June 2023
会议地点
Rome, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
To guarantee excellent reliability performance in ultra-reliable low-latency communications (URLLC), pragmatic precoder design is an effective approach. However, an efficient precoder design highly depends on the accurate instantaneous channel state information at the transmitter (ICSIT), which however, is not always available in practice. To overcome this problem, in this paper, we focus on the orthogonal time frequency space (OTFS)-based URLLC system and adopt a deep learning (DL) approach to directly predict the precoder for the next time frame to minimize the frame error rate (FER) via implicitly exploiting the features from estimated historical channels in the delay-Doppler domain. By doing this, we can guarantee the system reliability even without the knowledge of ICSIT. To this end, a general precoder design problem is formulated where a closed-form theoretical FER expression is specifically derived to characterize the system reliability. Then, a delay-Doppler domain channels-aware convolutional long short-term memory (CLSTM) network (DDCL-Net) is proposed for predictive precoder design. In particular, both the convolutional neural network and LSTM modules are adopted in the proposed neural network to exploit the spatial-temporal features of wireless channels for improving the learning performance. Finally, simulation results demonstrated that the FER performance of the proposed method approaches that of the perfect ICSI-aided scheme.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
WOS研究方向
Telecommunications
WOS类目
Telecommunications
WOS记录号
WOS:001094862605124
EI入藏号
20234815114190
EI主题词
Channel state information ; Convolution ; Convolutional neural networks ; Learning systems ; Reliability
EI分类号
Information Theory and Signal Processing:716.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10278742
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/609968
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Information Engineering, The Hong Kong Polytechnic University
2.School of Engineering, University of Western Australia, Perth, Australia
3.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, China
4.School of Electrical and Information Engineering, University of Sydney, Sydney, Australia
5.School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia
推荐引用方式
GB/T 7714
Chang Liu,Shuangyang Li,Weijie Yuan,et al. Deep Learning-Empowered Predictive Precoder Design for OTFS Transmission in URLLC[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:5651-5657.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chang Liu]的文章
[Shuangyang Li]的文章
[Weijie Yuan]的文章
百度学术
百度学术中相似的文章
[Chang Liu]的文章
[Shuangyang Li]的文章
[Weijie Yuan]的文章
必应学术
必应学术中相似的文章
[Chang Liu]的文章
[Shuangyang Li]的文章
[Weijie Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。