中文版 | English
题名

Detecting Temporal Inconsistency in Biased Datasets for Android Malware Detection

作者
DOI
发表日期
2023
会议名称
SEP 11-15, 2023
ISSN
2151-0830
ISBN
979-8-3503-3033-5
会议录名称
页码
17-23
会议日期
11-15 Sept. 2023
会议地点
Luxembourg, Luxembourg
摘要
Machine learning (ML) has exhibited great potential in Android malware detection. Yet, the reliability of these ML models, as well as the fairness of their evaluation, hinge significantly on the quality of the datasets used. A significant issue compromising these aspects is the presence of temporal inconsistencies within datasets, which could lead to overestimated detection performance. While previous research has acknowledged the impact of temporal inconsistencies, the proposed detection approaches often falter in accuracy and practicality. Previous studies have had limitations when it comes to dealing with complex cases of temporal inconsistencies. Additionally, their approaches require knowledge of a dataset's temporal attributes, which is often not realistic in real-world applications. In response to these challenges, we propose a novel ML-based approach to comprehensively and effectively detect temporal inconsistencies in Android malware datasets, regardless of the magnitude of these inconsistencies. Distinguishing itself from prior attempts, our approach accurately identifies inconsistencies in unknown datasets, without making any assumptions about their temporal attributes. Moreover, we introduce a new benchmark dataset of 78,000 diverse Android samples, spanning malware to benign samples from 2010 to 2022, for exploring temporal inconsistency. A rigorous evaluation of our approach using this dataset reveals its proficiency in managing temporal inconsistencies, achieving a remarkable 98.3% detection accuracy. We further validate the efficacy of our feature selection procedure and demonstrate the robustness of our approach when applied to unknown datasets. Collectively, our findings pioneer a novel performance standard in Android malware detection assessments, contributing to the enhancement of reliability in ML-based techniques.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001096603000005
EI入藏号
20234915149978
EI主题词
Android (operating system) ; Chemical detection ; Mobile security ; Petroleum reservoir evaluation ; Quality control
EI分类号
Petroleum Deposits : Development Operations:512.1.2 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Chemistry:801 ; Quality Assurance and Control:913.3
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10298755
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/609971
专题南方科技大学
作者单位
1.Southern University of Science and Technology
2.Monash University
3.Beihang University
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Haonan Hu,Yue Liu,Yanjie Zhao,et al. Detecting Temporal Inconsistency in Biased Datasets for Android Malware Detection[C],2023:17-23.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Haonan Hu]的文章
[Yue Liu]的文章
[Yanjie Zhao]的文章
百度学术
百度学术中相似的文章
[Haonan Hu]的文章
[Yue Liu]的文章
[Yanjie Zhao]的文章
必应学术
必应学术中相似的文章
[Haonan Hu]的文章
[Yue Liu]的文章
[Yanjie Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。