中文版 | English
题名

Utility-Aware Time Series Data Release with Anomalies under TLDP

作者
发表日期
2023
DOI
发表期刊
ISSN
2161-9875
EISSN
1558-0660
卷号PP期号:99页码:1-13
摘要
With the prevalence of mobile computing, mobile devices have been generating numerous sensor data, a.k.a., time series. Since these time series may include sensitive information, users are posed with severe privacy risks. To protect individuals' privacy, local differential privacy (LDP) is proposed. However, the added noise satisfying LDP typically degrades the utility of released data, especially for anomaly detection such as healthcare monitoring and hazard alarming. In this paper, we study privacy-preserving time series release with anomalies. Recently, local differential privacy in the temporal setting (TLDP) is proposed to perturb the temporal order rather than the values. While it improves the utility for releasing value-critical data, it still suffers from low utility for anomaly detection, because of the inevitable missing and delayed values incurred by TLDP perturbation. We propose to improve its utility from two aspects. To reduce the missing values, we utilize selective substitution according to items' anomaly scores. To decrease the delayed values, we define metric-based (\alpha, \delta ) (α,δ)-TLDP and propose a mechanism that can prioritize anomaly release at a close timestamp while still guaranteeing the same TLDP privacy. Through theoretical and empirical evaluation, we show superior performance gain over existing TLDP-based mechanisms on both synthetic and real-world datasets.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
EI入藏号
20234715088044
EI主题词
Anomaly detection ; Data privacy ; Mobile computing ; Perturbation techniques
EI分类号
Mathematics:921 ; Mathematical Statistics:922.2
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85177029204
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10319070
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/609975
专题工学院_计算机科学与工程系
理学院_深圳国家应用数学中心
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, and National Center for Applied Mathematics Shenzhen, Southern University of Science and Technology, Shenzhen, China
3.Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yulian Mao,Qingqing Ye,Qi Wang,et al. Utility-Aware Time Series Data Release with Anomalies under TLDP[J]. IEEE Transactions on Mobile Computing,2023,PP(99):1-13.
APA
Yulian Mao,Qingqing Ye,Qi Wang,&Haibo Hu.(2023).Utility-Aware Time Series Data Release with Anomalies under TLDP.IEEE Transactions on Mobile Computing,PP(99),1-13.
MLA
Yulian Mao,et al."Utility-Aware Time Series Data Release with Anomalies under TLDP".IEEE Transactions on Mobile Computing PP.99(2023):1-13.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yulian Mao]的文章
[Qingqing Ye]的文章
[Qi Wang]的文章
百度学术
百度学术中相似的文章
[Yulian Mao]的文章
[Qingqing Ye]的文章
[Qi Wang]的文章
必应学术
必应学术中相似的文章
[Yulian Mao]的文章
[Qingqing Ye]的文章
[Qi Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。