中文版 | English
题名

Distributed BESS Scheduling for Power Demand Reshaping in 5G and Beyond Networks

作者
发表日期
2023
DOI
发表期刊
ISSN
2473-2400
EISSN
2473-2400
卷号PP期号:99页码:1-1
摘要
The mobile network operators are upgrading their network facilities and shifting to the 5G era at an unprecedented pace. The huge operating expense (OPEX), mainly the energy consumption cost, has become the major concern of the operators. In this work, we investigate the energy cost-saving potential by transforming the backup batteries of base stations (BSs) to a distributed battery energy storage system (BESS). Specifically, to minimize the total energy cost, we model the distributed BESS discharge/charge scheduling as an optimization problem by incorporating comprehensive practical considerations. Then, considering the dynamic BS power demands in practice, we propose a multi-agent deep reinforcement learning (MADRL) based approach to make distributed BESS scheduling decisions in real-time. Particularly, QMIX framework is leveraged to learn the partial policy of each agent in the training phase; while in the execution phase, each BS can make scheduling decisions based on local information. The experiments using real-world BS deployment and traffic load data demonstrate that with our QMIX-based distributed BESS scheduling, the peak power demand charge of BSs can be reduced by more than 26.59%, and the yearly OPEX saving for 2282 5G BSs could reach up to U.S. $ 196,000.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20234715088180
EI主题词
5G mobile communication systems ; Deep learning ; Digital storage ; Multi agent systems ; Personnel training ; Reinforcement learning ; Secondary batteries ; Wireless networks
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Secondary Batteries:702.1.2 ; Electric Power Systems:706.1 ; Radio Systems and Equipment:716.3 ; Data Storage, Equipment and Techniques:722.1 ; Data Communication, Equipment and Techniques:722.3 ; Artificial Intelligence:723.4 ; Personnel:912.4
Scopus记录号
2-s2.0-85177025301
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10317899
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/610005
专题未来网络研究院
作者单位
1.School of Electrical and Electronic Engineering, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
2.National University of Defense Technology, Changsha, China
3.Sustech Institute of Future Networks, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Peng Qin,Guoming Tang,Yang Fu,et al. Distributed BESS Scheduling for Power Demand Reshaping in 5G and Beyond Networks[J]. IEEE Transactions on Green Communications and Networking,2023,PP(99):1-1.
APA
Peng Qin,Guoming Tang,Yang Fu,&Yi Wang.(2023).Distributed BESS Scheduling for Power Demand Reshaping in 5G and Beyond Networks.IEEE Transactions on Green Communications and Networking,PP(99),1-1.
MLA
Peng Qin,et al."Distributed BESS Scheduling for Power Demand Reshaping in 5G and Beyond Networks".IEEE Transactions on Green Communications and Networking PP.99(2023):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng Qin]的文章
[Guoming Tang]的文章
[Yang Fu]的文章
百度学术
百度学术中相似的文章
[Peng Qin]的文章
[Guoming Tang]的文章
[Yang Fu]的文章
必应学术
必应学术中相似的文章
[Peng Qin]的文章
[Guoming Tang]的文章
[Yang Fu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。