[1] 彭娟. 真空感应炉冶炼高纯工业纯铁的工艺研究[D]. 东北大学, 2017.
[2] 孔金星, 胡锟, 夏志辉, 等. 纯铁车削刀具磨损对表面完整性的影响[J]. 华南理工大学学报(自然科学版), 2016, 44(02): 74-80.
[3] CHON K S, NAMBA Y, YOON K H. Single-point diamond turning of aspheric mirror with inner reflecting surfaces[J]. Key Engineering Materials, 2008, 364: 39-42.
[4] YAN J, MAEKAWA K, TAMAKI J, et al. Experimental study on the ultraprecision ductile machinability of single-crystal germanium[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2004, 47(1): 29-36.
[5] FANG FZ, VENKATESH V C, ZHANG GX. Diamond turning of soft semiconductors to obtain nanometric mirror surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19: 637-641.
[6] RAMANUJACHAR K, SUBRAMANIAN S V. Micro-mechanisms of tool wear in machining free cutting steels[J]. Wear, 1996, 197(1-2): 45-55.
[7] LANE B M, DOW T A, SCATTERGOOD R. Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel[J]. Wear, 2013, 300(1-2): 216-224.
[8] OLIVEIRA L J, BOBROVNITCHII G S, FILGUEIRA M. Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix[J]. International Journal of Refractory Metals and Hard Materials, 2007, 25(4): 328-335.
[9] 刘光宇. 纯铁超声椭圆振动切削表面完整性研究[D]. 大连理工大学, 2020.
[10] 孙贺龙. 低温CO2内冷辅助PCD刀具切削轴承套圈的基础研究[D]. 南京航空航天大学, 2021.
[11] CASSTEVENS J M. Diamond turning of steel in a carbon-saturated atmosphere[J]. NASA STI/Recon Technical Report N, 1982, 83: 25915.
[12] ZOU L, YIN J, HUANG Y, et al. Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals[J]. Diamond and Related Materials, 2018, 86: 29-40.
[13] EVANS C, BRYAN J B. Cryogenic diamond turning of stainless steel[J]. CIRP Annals, 1991, 40(1): 571-575.
[14] 刘瑞虎. 基于单颗磨粒磨削行为的硬脆材料表面加工机理研究[D]. 长安大学, 2022.
[15] 刘瑞虎, 郭磊, 刘永胜, 等. 基于SPH方法的碳化硅材料单颗磨粒磨削仿真[J]. 组合机床与自动化加工技术, 2022(05): 55-58.
[16] SHAMOTO E, SUZUKI N, TSUCHIYA E, et al. Development of 3 DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces[J]. CIRP Annals, 2005, 54(1): 321-324.
[17] ZHANG XQ, LIU K, KUMAR A S, et al. A study of the diamond tool wear suppression mechanism in vibration-assisted machining of steel[J]. Journal of Materials Processing Technology, 2014, 214(2): 496-506.
[18] ZHANG X, ARIF M, LIU K, et al. A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials[J]. International Journal of Machine Tools and Manufacture, 2013, 69: 57-66.
[19] ZHANG X, KUMAR A S, RAHMAN M, et al. An analytical force model for orthogonal elliptical vibration cutting technique[J]. Journal of Manufacturing Processes, 2012, 14(3): 378-387.
[20] BRINKSMEIER E, GLÄBE R. Advances in precision machining of steel[J]. CIRP Annals, 2001, 50(1): 385-388.
[21] BRINKSMEIER E, GLÄBE R, OSMER J. Ultra-precision diamond cutting of steel molds[J]. CIRP Annals, 2006, 55(1): 551-554.
[22] INADA A, MIN S, OHMORI H. Micro cutting of ferrous materials using diamond tool under ionized coolant with carbon particles[J]. CIRP Annals, 2011, 60(1): 97-100.
[23] SCHOOP J, SALES W F, JAWAHIR I S. High speed cryogenic finish machining of Ti-6Al4V with polycrystalline diamond tools[J]. Journal of Materials Processing Technology, 2017, 250: 1-8.
[24] 李晋年, 袁哲俊, 周明. 黑色金属的超低温金刚石超精密切削[J]. 机械工程学报, 1989, 25(3): 69-72.
[25] 张元良, 周志民, 黄春英, 等. 天然金刚石振动与气体保护切削黑色金属技术研究[J]. 机械科学与技术, 2004(03): 339-340.
[26] 周志民, 张元良, 李晓艳, 等. 油气雾化技术在钛合金加工中应用研究[J]. 大连理工大学学报, 2011, 51(01): 41-45.
[27] WANG Y, SUZUKI N, SHAMOTO E, et al. Investigation of tool wear suppression in ultraprecision diamond machining of die steel[J]. Precision Engineering, 2011, 35(4): 677-685.
[28] WANG Y, ZHAO Q, SHANG Y, et al. Ultra-precision machining of Fresnel microstructure on die steel using single crystal diamond tool[J]. Journal of Materials Processing Technology, 2011, 211(12): 2152-2159.
[29] 邹莱. 黑色金属金刚石切削刀具磨损及其抑制的研究[D]. 哈尔滨工业大学, 2015.
[30] 黄帅. 冷等离子体辅助金刚石切削黑色金属基础研究[D]. 大连理工大学, 2017.
[31] LEE Y J, HAO L, LÜDER J, et al. Micromachining of ferrous metal with an ion implanted diamond cutting tool[J]. Carbon, 2019, 152: 598-608.
[32] ZHANG XQ, DENG H, LIU K. Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools[J]. CIRP Annals, 2019, 68(1): 69-72.
[33] CHAABANI S, ARRAZOLA P J, AYED Y, et al. Comparison between cryogenic coolants effect on tool wear and surface integrity in finishing turning of Inconel 718[J]. Journal of Materials Processing Technology, 2020, 285: 116780.
[34] PAUL E, EVANS C J, MANGAMELLI A, et al. Chemical aspects of tool wear in single point diamond turning[J]. Precision Engineering, 1996, 18(1): 4-19.
[35] BYSHKIN M S. Bond-coordination lattice model for phase transformations in carbon[J]. Diamond and Related Materials, 2011, 20(10): 1310-1314.
[36] UEMURA M. An analysis of the catalysis of Fe, Ni or Co on the wear of diamonds[J]. Tribology International, 2004, 37(11-12): 887-892.
[37] TILLMANN W, FERREIRA M, STEFFEN A, et al. Carbon reactivity of binder metals in diamond–metal composites–characterization by scanning electron microscopy and X-ray diffraction[J]. Diamond and Related Materials, 2013, 38: 118-123.
[38] TANAKA H, SHIMADA S, IKAWA N, et al. Wear mechanism of diamond cutting tool in machining of steel[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2001, 196: 69-78.
[39] NARULKAR R, BUKKAPATNAM S, RAFF L M, et al. Graphitization as a precursor to wear of diamond in machining pure iron: A molecular dynamics investigation[J]. Computational Materials Science, 2009, 45(2): 358-366.
[40] 曹思宇. 单晶硅超精密切削金刚石刀具石墨化磨损分子动力学仿真[D]. 燕山大学, 2013.
[41] WANG S, XIA S, WANG H, et al. Prediction of surface roughness in diamond turning of Al6061 with precipitation effect[J]. Journal of Manufacturing Processes, 2020, 60: 292-298.
[42] ZHU T, CAI M, GONG Y, et al. Study on chip formation in grinding of nickel-based polycrystalline superalloy GH4169[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(1-2): 1135-1148.
[43] 刘悦, 刘英舜. 高速加工技术的应用和发展趋势[J]. 机床与液压, 2003(05): 6-7.
[44] YANG X, ZHANG B. Material embrittlement in high strain-rate loading[J]. International Journal of Extreme Manufacturing, 2019, 1(2): 022003.
[45] SALOMON C J. Process for the machining of metals or similarly acting materials when being worked by cutting tools: Germany, 523594[P].
[46] ZHANG B, YIN J. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing, 2019, 1(1): 012007.
[47] SUN C, HONG Y, XIU S, et al. Grain refinement mechanism of metamorphic layers by abrasive grinding hardening[J]. Journal of Manufacturing Processes, 2021, 69: 125-141.
[48] SCHULZ H, MORIWAKI T. High-speed machining[J]. CIRP Annals, 1992, 41(2): 637-643.
[49] FIELDS M, HARVEY S M, KAHLES J F. High Speed Machining Update, technical paper presented at STC-C, CIRP General Assembly, 1982.
[50] RAGHAVENDRA S, SATHYANARAYANA P S, VS T, et al. High-speed machining of titanium Ti6Al4V alloy components: study and optimization of cutting parameters using RSM[J]. Advances in Materials and Processing Technologies, 2022, 8(1): 277-290.
[51] TLUSTY J. High-speed machining[J]. CIRP Annals, 1993, 42(2): 733-738.
[52] DENG X, ZHANG F, LIAO Y, et al. Effect of grinding parameters on surface integrity and flexural strength of 3Y-TZP ceramic[J]. Journal of the European Ceramic Society, 2022, 42(4): 1635-1644.
[53] ZHANG X, HUANG R, LIU K, et al. Suppression of diamond tool wear in machining of tungsten carbide by combining ultrasonic vibration and electrochemical processing[J]. Ceramics International, 2018, 44(4): 4142-4153.
[54] CHEN Z, MA D, WANG S, et al. Wear resistance and thermal stability enhancement of PDC sintered with Ti-coated diamond and cBN[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105278.
[55] ASHLEY S. High-speed machining goes mainstream[J]. Mechanical Engineering-CIME, 1995, 117(5): 56-62.
[56] ZHU T, CAI M, GONG Y, et al. Study on chip formation in grinding of nickel-based polycrystalline superalloy GH4169[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(1-2): 1135-1148.
[57] 王征, 唐毅, 郑楠, 等. 基于表面完整性理论的航空发动机再制造关键技术及应用[J]. 河南科技, 2020, 39(28): 69-73.
[58] JAWAHIR I S, BRINKSMEIER E, M'SAOUBIs R, et al. Surface integrity in material removal processes: recent advances[J]. CIRP Annals, 2011, 60(2): 603-626.
[59] 付秀丽. 高速切削航空铝合金变形理论及加工表面形成特性研究[D]. 山东大学, 2007.
[60] 娄忠波. 纯铁薄壁零件车削残余应力及变形研究[D]. 大连理工大学, 2019.
[61] HENRIKSEN E K. Residual stresses in machined surfaces[J]. Transactions of the American Society of Mechanical Engineers, 1951, 73(1): 69-76.
[62] ZHU T, CAI M, GONG Y, et al. Study on the chip formation in grinding of nickel-based single-crystal superalloy DD5[J]. The International Journal of Advanced Manufacturing Technology, 2023: 1-18.
[63] 李春光. 超声椭圆振动切削技术的研究[D]. 东北大学, 2013.
[64] 孔金星, 陈辉, 何宁, 等. 纯铁材料动态力学性能测试及本构模型[J]. 航空学报, 2014, 35(07): 2063-2071.
[65] 包卫平, 赵昱臻, 李春明, 等. 纯铁高温高应变率下的动态本构关系试验研究[J]. 机械工程学报, 2010, 46(04): 74-79.
[66] 孔金星, 邓飞, 赵威, 等. 冷却润滑方式对纯铁车削表面完整性的影响[J]. 华南理工大学学报(自然科学版), 2015, 43(06): 89-95.
[67] HAYAKAWA M, NAKAYAMA E, OKAMURA K, et al. Development of micro-shear fatigue test and its application to single crystal of pure iron[J]. Procedia Engineering, 2016, 160: 167-174.
[68] 孔金星. 纯铁薄壁球壳精密车削技术基础研究[D]. 南京航空航天大学, 2016.
[69] 李孟飞. 高速铣削SiCp/Al复合材料的表面质量研究[D]. 哈尔滨工业大学, 2020.
[70] ZHANG X, KUMAR A S, RAHMAN M, et al. Modeling of the effect of tool edge radius on surface generation in elliptical vibration cutting[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 35-42.
[71] 徐东鸣, 黄明, 夏志辉. 金属陶瓷车削纯铁材料的切削性能研究[J]. 现代制造工程, 2011(05): 85-88.
[72] SCAPIN M, MANES A. Behaviour of Al6061-T6 alloy at different temperatures and strain-rates: experimental characterization and material modelling[J]. Materials Science and Engineering: A, 2018, 734: 318-328.
[73] 余同希, 邱信明. 冲击动力学[M]. 北京: 清华大学出版社, 2011.
[74] HOPKINSON B X. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1914, 213(497-508): 437-456.
[75] DIXIT U S, JOSHI S N, DAVIM J P. Incorporation of material behavior in modeling of metal forming and machining processes: A review[J]. Materials & Design, 2011, 32(7): 3655-3670.
[76] JOHNSON G R, COOK W H. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures[J]. Proceedings 7th International Symposium on Ballistics, 1983: 541-547.
[77] JIANG F, LI J, SUN J, et al. Al7050-T7451 turning simulation based on the modified power-law material model[J]. International Journal of Advanced Manufacturing Technology, 2010, 48.
[78] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[79] BRINKSMEIER E, GLÄBE R, SCHÖNEMANN L. Review on diamond-machining processes for the generation of functional surface structures[J]. CIRP Journal of Manufacturing Science and Technology, 2012, 5(1): 1-7.
[80] SHAMOTO E, SUZUKI N, HINO R. Analysis of 3D elliptical vibration cutting with thin shear plane model[J]. CIRP Annals, 2008, 57(1): 57-60.
[81] 王涛. 高体积分数SiCp/Al复合材料高速铣削基础研究[D]. 北京理工大学, 2015.
[82] GUO S, ZHANG JQ, JIANG QH, et al. Surface integrity in high-speed grinding of Al6061T6 alloy[J]. CIRP Annals, 2022, 71(1): 281-284.
[83] M'SAOUBI R, AXINTE D, HERBERT C, et al. Surface integrity of nickel-based alloys subjected to severe plastic deformation by abusive drilling[J]. CIRP Annals, 2014, 63(1): 61-64.
[84] LIAO Z, POLYAKOV M, DIAZ O G, et al. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation-mechanical machining case[J]. Acta Material, 2019, 180: 2-14.
[85] DRYZEK J, WRÓBEL M. Detection of tribo-layer in pure iron using positron annihilation and EBSD techniques[J]. Tribology International, 2020, 144: 106133.
[86] PRASAD S V, BATTAILE C C, KOTULA P G. Friction transitions in nanocrystalline nickel[J]. Scripta Material, 2011, 64(8): 729-732.
[87] 赵香港, 郝秀清, 岳彩旭, 等. 黑色金属的金刚石刀具加工技术研究进展[J]. 中国表面工程, 2022, 35(01): 34-52.
[88] WANG B, LIU Z, CAI Y, et al. Advancements in material removal mechanism and surface integrity of high-speed metal cutting: a review[J]. International Journal of Machine Tools and Manufacture, 2021, 166: 103744.
[89] GUPTA M K, KHAN A M, SONG Q, et al. A review on conventional and advanced minimum quantity lubrication approaches on performance measures of grinding process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117: 729-750.
[90] SANJEEVI R, KUMAR G A, KRISHNAN B R. Optimization of machining parameters in plane surface grinding process by response surface methodology[J]. Materials Today: Proceedings, 2021, 37: 85-87.
[91] SONG Y C, NEZU K, PARK C H, et al. Tool wear control in single-crystal diamond cutting of steel by using the ultra-intermittent cutting method[J]. International Journal of Machine Tools and Manufacture, 2009, 49: 339-343.
[92] GUO S, LU SX, ZHANG B, et al. Surface integrity and material removal mechanisms in high-speed grinding of Al/SiCp metal matrix composites[J]. International Journal of Machine Tools and Manufacture, 2022, 178: 103906.
修改评论