中文版 | English
题名

基于演化计算的网络社区发现研究

其他题名
NETWORK COMMUNITY DETECTION BASED ON EVOLUTIONARY COMPUTATION
姓名
姓名拼音
LV Chao
学号
11849557
学位类型
博士
学位专业
0812 计算机科学与技术
学科门类/专业学位类别
08 工学
导师
史玉回
导师单位
计算机科学与工程系
论文答辩日期
2022-05-24
论文提交日期
2023-11-22
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

复杂网络是表征现实世界中大型复杂系统的有效工具,已成为数学、物理学、数据科学等领域的研究热点。在复杂网络的研究中,“社区”的概念受到越来越多的关注。事实上,社区可看作组成网络的基本模块,将一个网络划分为若干社区实际达到了将一个复杂系统分解为若干相互独立的子系统的目的。为更方便地研究复杂系统的组成与结构,网络社区发现技术应运而生。现实中的复杂网络有多种类型,催生出了不同种类的社区发现问题。近年来,国内外学者针对不同的社区发现问题提出了一系列解决方法,但都存在一些不足。在现有社区发现方法中,模块度优化法因其社区划分质量高和适用范围广的特点受到广泛关注,而演化计算作为一种新兴的优化工具十分适合解决这类高维离散的优化问题。因此,本文以模块度优化为基本原理,以演化计算为基本优化工具,在分析现有方法不足之处的基础上,针对局部社区发现、全局社区发现和多层网络社区发现这三类核心社区发现问题展开深入研究,分别提出相应的解决算法。本文的主要研究工作概括如下:

(1)针对现有局部社区发现算法缺乏网络整体认识的局限,将局部社区发现重新建模为全局二进制优化问题并利用二进制演化算法解决,通过设计一系列演化算子和优化机制,提出了一种演化局部社区发现算法,该算法能够利用已知网络的全局信息搜索指定节点所在的局部社区。在复杂网络上的测试结果表明该算法与现有局部社区发现算法相比具有更高的准确度。

(2)针对演化算法在复杂崎岖解空间中容易陷入局部最优解的缺陷,提出一种简化适应度空间引导的演化优化方法,即通过构造原优化问题的简化模型来改进其适应度空间,使算法更容易获取全局最优解。首先针对连续优化问题,提出一种利用机器学习模型来平滑目标函数适应度空间的方法,研究了各种模型对复杂优化函数的平滑效果。在此基础上提出了一种简化适应度空间引导的演化优化框架。在连续函数上的测试结果表明该方法能显著提高演化算法在粗糙崎岖解空间中的全局优化能力。

(3)针对演化算法在模块度空间中容易陷入局部最优解,进而导致全局社区划分质量下降的缺陷,提出一种代理网络引导的全局社区发现方法。该方法首先基于原网络谱信息构造代理网络,以实现对网络模块度空间的简化,然后利用代理网络来引导原网络的模块度优化,进而帮助演化算法发现网络中隐藏的不明显的社区结构。实验结果表明该方法能够提高演化计算发现复杂网络全局社区结构的能力。

(4)针对现有多层网络社区发现算法检测层内社区时忽略各层拓扑相关性的缺陷,将多层网络的层内社区发现建模为一个多任务优化问题并采用演化多任务优化算法解决。为克服现有演化多任务优化算法难以实现对各优化进程的独立监测与控制的缺陷,提出一种新型多任务优化算法——头脑风暴多任务优化。该算法采用多种群优化机制,能够独立监测和控制各任务的进行,且容易并行化实现。为设计该算法,首先将头脑风暴由单任务模式拓展至多任务模式,提出多任务问题头脑风暴处理模型,以该模型为基础,设计出算法的框架并开发出一系列演化算子和机制。之后,通过研究算法的优化过程,提出一种信息转移控制策略并应用于算法中,形成了改进版的多任务头脑风暴算法,提高了对转移信息的利用效率。在多任务优化问题集上的测试结果表明多任务头脑风暴算法与现有算法相比具有更优异的优化性能。最后,以改进版的多任务头脑风暴为基本优化算法,在充分利用各层拓扑相似性的基础上,实现了多层网络各层社区结构的联合检测,提高了层内社区发现的效率。

(5)针对现有多层网络联合社区发现算法的准确度较低且容易造成误差累积的缺陷,提出了一种基于演化多任务聚类的多层网络联合社区发现方法。该方法首先基于层内社区发现的结果和多层网络的各层信息来构造一致性网络,然后采用演化算法优化该网络的广义模块度,最终获得联合社区划分。最终,通过将该方法和基于多任务优化的层内社区发现相结合,构造出新型多层网络社区发现算法——头脑风暴多层社区发现。实验结果表明,与现有算法相比,该算法在层内社区和联合社区的检测上均具有更好的效果。

综上,本文旨在建立利用演化计算技术解决复杂网络社区发现问题的理论体系和方法。此外,本文在解决网络社区发现问题的过程中提出了一些较现有算法效果更好的通用型演化计算模型与算法。因此,本文的研究在社区发现领域和演化计算领域均具有一定的理论与应用价值。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07-04
参考文献列表

[1] 孙玺菁,司守奎. 复杂网络算法与应用[M]. 北京:国防工业出版社,2015.
[2] Bollobás B, Bollobas B. Modern graph theory[M]. Springer Science & Business Media, 1998.
[3] Euler L. Solutio problematis ad geometriam situs pertinentis[J]. Commentarii academiae scientiarum Petropolitanae, 1741: 128-140.
[4] Erdos P, Rényi A. On the evolution of random graphs[J]. Publ. Math. Inst. Hung. Acad. Sci, 1960, 5(1): 17-60.
[5] Milgram S. The small world problem[J]. Psychology today, 1967, 2(1): 60-67.
[6] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[7] Bagrow J P, Bollt E M. Local method for detecting communities[J]. Physical Review E, 2005, 72(4): 046108.
[8] Papadopoulos S, Skusa A, Vakali A, et al. Bridge bounding: A local approach for efficient community discovery in complex networks[J]. arXiv preprint arXiv:0902.0871, 2009.
[9] Clauset A. Finding local community structure in networks[J]. Physical review E, 2005, 72(2): 026132.
[10] Luo F, Wang J Z, Promislow E. Exploring local community structures in large networks[J]. Web Intelligence and Agent Systems: An International Journal, 2008, 6(4): 387-400.
[11] Chen Q, Wu T T, Fang M. Detecting local community structures in complex networks based on local degree central nodes[J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(3): 529-537.
[12] Ding X, Zhang J, Yang J. A robust two-stage algorithm for local community detection[J]. Knowledge-Based Systems, 2018, 152: 188-199.
[13] Wu Y J, Huang H, Hao Z F, et al. Local community detection using link similarity[J]. Journal of computer science and technology, 2012, 27(6): 1261-1268.
[14] Bian Y, Ni J, Cheng W, et al. Many heads are better than one: Local community detection by the multi-walker chain[C]//2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017: 21-30.
[15] Yao Y, Wu W, Lei M, et al. Community detection based on variable vertex influence[C]//2016 IEEE First International Conference on Data Science in Cyberspace (DSC). IEEE, 2016: 418-423.
[16] Luo W, Zhang D, Jiang H, et al. Local community detection with the dynamic membership function[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3136-3150.
[17] Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks[J]. Proceedings of the national academy of sciences, 2004, 101(9): 2658-2663.
[18] Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2004, 69(6): 066133.
[19] Ng A Y, Jordan M I, Weiss Y. On spectral clustering: Analysis and an algorithm[C]//Advances in neural information processing systems. 2002: 849-856.
[20] Donetti L, Munoz M A. Detecting network communities: a new systematic and efficient algorithm[J]. Journal of Statistical Mechanics: Theory and Experiment, 2004, 2004(10): P10012.
[21] Capocci A, Servedio V D P, Caldarelli G, et al. Detecting communities in large networks[J]. Physica A: Statistical Mechanics and its Applications, 2005, 352(2-4): 669-676.
[22] Psorakis I, Roberts S, Ebden M, et al. Overlapping community detection using bayesian non-negative matrix factorization[J]. Physical Review E, 2011, 83(6): 066114.
[23] Févotte C, Idier J. Algorithms for nonnegative matrix factorization with the β-divergence[J]. Neural computation, 2011, 23(9): 2421-2456.
[24] Wang F, Li T, Wang X, et al. Community discovery using nonnegative matrix factorization[J]. Data Mining and Knowledge Discovery, 2011, 22(3): 493-521.
[25] Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the national academy of sciences, 2002, 99(12): 7821-7826.
[26] Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Physical review E, 2004, 70(6): 066111.
[27] Wakita K, Tsurumi T. Finding community structure in mega-scale social networks[C]//Proceedings of the 16th international conference on World Wide Web. 2007: 1275-1276.
[28] Schuetz P, Caflisch A. Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement[J]. Physical Review E, 2008, 77(4): 046112.
[29] Barber M J, Clark J W. Detecting network communities by propagating labels under constraints[J]. Physical Review E, 2009, 80(2): 026129.
[30] Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the national academy of sciences, 2008, 105(4): 1118-1123.
[31] Pons P, Latapy M. Computing communities in large networks using random walks[C]//International symposium on computer and information sciences. Springer, Berlin, Heidelberg, 2005: 284-293.
[32] Persson C, Bohlin L, Edler D, et al. Maps of sparse Markov chains efficiently reveal community structure in network flows with memory[J]. arXiv preprint arXiv:1606.08328, 2016.
[33] Palla G, Derényi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818.
[34] Karrer B, Newman M E J. Stochastic blockmodels and community structure in networks[J]. Physical review E, 2011, 83(1): 016107.
[35] Hastings M B. Community detection as an inference problem[J]. Physical Review E, 2006, 74(3): 035102.
[36] Peixoto T P. Hierarchical block structures and high-resolution model selection in large networks[J]. Physical Review X, 2014, 4(1): 011047.
[37] Ingu T, Takagi H. Accelerating a GA convergence by fitting a single-peak function[C]//FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No. 99CH36315). IEEE, 1999, 3: 1415-1420.
[38] Pei Y, Takagi H. Accelerating evolutionary computation with elite obtained in projected one-dimensional spaces[C]//2011 Fifth International Conference on Genetic and Evolutionary Computing. IEEE, 2011: 89-92.
[39] Liang K H, Yao X, Newton C. Combining landscape approximation and local search in global optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406). IEEE, 1999, 2: 1514-1520.
[40] Liang K H, Yao X, Newton C. Evolutionary search of approximated n-dimensional landscapes[J]. International Journal of Knowledge Based Intelligent Engineering Systems, 2000, 4(3): 172-183.
[41] Pei Y, Takagi H. Comparative study on fitness landscape approximation with fourier transform[C]//2012 Sixth International Conference on Genetic and Evolutionary Computing. IEEE, 2012: 400-403.
[42] Pei Y, Takagi H. Fourier analysis of the fitness landscape for evolutionary search acceleration[C]//2012 IEEE Congress on Evolutionary Computation. IEEE, 2012: 1-7.
[43] Yang D, Flockton S J. Evolutionary algorithms with a coarse-to-fine function smoothing[C]//Proceedings of 1995 IEEE International Conference on Evolutionary Computation. IEEE, 1995, 2: 657-662.
[44] Jerri A J. The Shannon sampling theorem—Its various extensions and applications: A tutorial review[J]. Proceedings of the IEEE, 1977, 65(11): 1565-1596.
[45] Novak E, Ritter K. The curse of dimension and a universal method for numerical integration[M]//Multivariate approximation and splines. Birkhäuser, Basel, 1997: 177-187.
[46] Gupta A, Ong Y S, Feng L. Multifactorial evolution: toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(3): 343-357.
[47] Rice J, Cloninger C R, Reich T. Multifactorial inheritance with cultural transmission and assortative mating. I. Description and basic properties of the unitary models[J]. American journal of human genetics, 1978, 30(6): 618.
[48] Bali K K, Gupta A, Feng L, et al. Linearized domain adaptation in evolutionary multitasking[C]//2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017: 1295-1302.
[49] Feng L, Zhou W, Zhou L, et al. An empirical study of multifactorial PSO and multifactorial DE[C]//2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017: 921-928.
[50] Shi Y. Particle swarm optimization: developments, applications and resources[C]//Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546). IEEE, 2001, 1: 81-86.
[51] Fleetwood K. An introduction to differential evolution[C]//Proceedings of Mathematics and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November, Brisbane, Australia. 2004: 785-791.
[52] Yu Y, Zhu A, Zhu Z, et al. Multifactorial differential evolution with opposition-based learning for multi-tasking optimization[C]//2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2019: 1898-1905.
[53] Chen Q, Ma X, Zhu Z, et al. Evolutionary multi-tasking single-objective optimization based on cooperative co-evolutionary memetic algorithm[C]//2017 13th International Conference on Computational Intelligence and Security (CIS). IEEE, 2017: 197-201.
[54] Tang J, Chen Y, Deng Z, et al. A Group-based Approach to Improve Multifactorial Evolutionary Algorithm[C]//IJCAI. 2018: 3870-3876.
[55] Wen Y W, Ting C K. Parting ways and reallocating resources in evolutionary multitasking[C]//2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017: 2404-2411.
[56] Zheng X, Qin A K, Gong M, et al. Self-regulated evolutionary multitask optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(1): 16-28.
[57] Feng L, Zhou L, Zhong J, et al. Evolutionary multitasking via explicit autoencoding[J]. IEEE transactions on cybernetics, 2018, 49(9): 3457-3470.
[58] Yuan Y, Ong Y S, Gupta A, et al. Evolutionary multitasking in permutation-based combinatorial optimization problems: Realization with TSP, QAP, LOP, and JSP[C]//2016 IEEE Region 10 Conference (TENCON). IEEE, 2016: 3157-3164.
[59] Sagarna R, Ong Y S. Concurrently searching branches in software tests generation through multitask evolution[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2016: 1-8.
[60] Bao L, Qi Y, Shen M, et al. An evolutionary multitasking algorithm for cloud computing service composition[C]//World congress on services. Springer, Cham, 2018: 130-144.
[61] Zhou L, Feng L, Zhong J, et al. Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2016: 1-8.
[62] Loe C W, Jensen H J. Comparison of communities detection algorithms for multiplex[J]. Physica A: Statistical Mechanics and its Applications, 2015, 431: 29-45.
[63] Lancichinetti A, Fortunato S. Consensus clustering in complex networks[J]. Scientific reports, 2012, 2(1): 1-7.
[64] Mucha P J, Richardson T, Macon K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878.
[65] Ma L, Gong M, Yan J, et al. Detecting composite communities in multiplex networks: A multilevel memetic algorithm[J]. Swarm and evolutionary computation, 2018, 39: 177-191.
[66] Amelio A, Pizzuti C. Community detection in multidimensional networks[C]//2014 IEEE 26th international conference on tools with artificial intelligence. IEEE, 2014: 352-359.
[67] Ma X, Dong D, Wang Q. Community detection in multi-layer networks using joint nonnegative matrix factorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2): 273-286.
[68] 陈立虎,林友芳,武志昊,景丽萍. 一种基于层次约简的多层网络社区发现算法[J]. 计算机与现代化,2017(6):84-90.
[69] Palla G, Barabási A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.
[70] Chakrabarti D, Kumar R, Tomkins A. Evolutionary clustering[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. 2006: 554-560.
[71] Folino F, Pizzuti C. A multiobjective and evolutionary clustering method for dynamic networks[C]//2010 international conference on advances in social networks analysis and mining. IEEE, 2010: 256-263.
[72] Deb K. Multi-objective optimisation using evolutionary algorithms: an introduction[M]//Multi-objective evolutionary optimisation for product design and manufacturing. Springer, London, 2011: 3-34.
[73] Cazabet R, Amblard F, Hanachi C. Detection of overlapping communities in dynamical social networks[C]//2010 IEEE second international conference on social computing. IEEE, 2010: 309-314.
[74] Nguyen N P, Dinh T N, Xuan Y, et al. Adaptive algorithms for detecting community structure in dynamic social networks[C]//2011 Proceedings IEEE INFOCOM. IEEE, 2011: 2282-2290.
[75] 何婧. 动态社交网络社区发现及演化分析[D]. 徐州:中国矿业大学硕士学位论文,2019.
[76] 胡北辰. 动态网络社区发现算法研究[J]. 长春师范大学学报,2019. 38(2):27-31.
[77] Ning H, Xu W, Chi Y, et al. Incremental spectral clustering by efficiently updating the eigen-system[J]. Pattern Recognition, 2010, 43(1): 113-127.
[78] Xin Y, Xie Z Q, Yang J. An adaptive random walk sampling method on dynamic community detection[J]. Expert Systems with Applications, 2016, 58: 10-19.
[79] 张翠云. 动态网络中社区发现的研究与实现[D]. 北京:北京邮电大学硕士学位论文,2019.
[80] Jian-Hua L, Rong-Hua Y, Shui-Hua S. The analysis of binary particle swarm optimization[J]. Journal of Nanjing University (Natural Sciences), 2011, 5: 003.
[81] Shi Y. Brain storm optimization algorithm[C]//International conference in swarm intelligence. Springer, Berlin, Heidelberg, 2011: 303-309.
[82] Smith R. The 7 Levels of Change, 2nd edn. Tapeslry Press, 2002.
[83] Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. MIT press, 1992.
[84] Pizzuti C. Evolutionary computation for community detection in networks: a review[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(3): 464-483.
[85] Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks[J]. Physics reports, 2014, 544(1): 1-122.
[86] Chen Q, Wu T T, Fang M. Detecting local community structures in complex networks based on local degree central nodes[J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(3): 529-537.
[87] Danon L, Diaz-Guilera A, Duch J, et al. Comparing community structure identification[J]. Journal of statistical mechanics: Theory and experiment, 2005, 2005(09): P09008.
[88] Berlingerio M, Coscia M, Giannotti F. Finding and characterizing communities in multidimensional networks[C]//2011 international conference on advances in social networks analysis and mining. IEEE, 2011: 490-494.
[89] Whitley D. A genetic algorithm tutorial[J]. Statistics and computing, 1994, 4(2): 65-85.
[90] Fleetwood K. An introduction to differential evolution[C]//Proceedings of Mathematics and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November, Brisbane, Australia. 2004: 785-791.
[91] Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms[J]. Physical review E, 2008, 78(4): 046110.
[92] Zachary W W. An information flow model for conflict and fission in small groups[J]. Journal of anthropological research, 1977, 33(4): 452-473.
[93] Lusseau D. The emergent properties of a dolphin social network[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2003, 270(suppl_2): S186-S188.
[94] V. Krebs. Political books network. Available: http://www.orgnet.com.
[95] Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth[J]. Knowledge and Information Systems, 2015, 42(1): 181-213.
[96] Hruschka E R, Campello R J G B, Freitas A A. A survey of evolutionary algorithms for clustering[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(2): 133-155.
[97] Park Y J, Song M S. A genetic algorithm for clustering problems[C]//Proceedings of the third annual conference on genetic programming. 1998, 1998: 568-575.
[98] Firat A, Chatterjee S, Yilmaz M. Genetic clustering of social networks using random walks[J]. Computational Statistics & Data Analysis, 2007, 51(12): 6285-6294.
[99] Liu J, Zhong W, Abbass H A, et al. Separated and overlapping community detection in complex networks using multiobjective evolutionary algorithms[C]//IEEE Congress on Evolutionary Computation. IEEE, 2010: 1-7.
[100] Rotta R, Noack A. Multilevel local search algorithms for modularity clustering[J]. Journal of Experimental Algorithmics (JEA), 2011, 16: 2.1-2.27.
[101] Ruan J, Zhang W. Identifying network communities with a high resolution[J]. Physical Review E, 2008, 77(1): 016104.
[102] Weisberg S. Applied linear regression[M]. John Wiley & Sons, 2005.
[103] Specht D F. A general regression neural network[J]. IEEE transactions on neural networks, 1991, 2(6): 568-576.
[104] Martin M. On-line support vector machine regression[C]//European Conference on Machine Learning. Springer, Berlin, Heidelberg, 2002: 282-294.
[105] Myles A J, Feudale R N, Liu Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics: A Journal of the Chemometrics Society, 2004, 18(6): 275-285.
[106] Ramachandran P, Zoph B, Le Q V. Searching for activation functions[J]. arXiv preprint arXiv:1710.05941, 2017.
[107] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[108] Dismuke C, Lindrooth R. Ordinary least squares[J]. Methods and Designs for Outcomes Research, 2006, 93: 93-104.
[109] Locatelli M. A note on the Griewank test function[J]. Journal of global optimization, 2003, 25(2): 169-174.
[110] Surjanovic S, Bingham D. Virtual Library of Simulation Experiments: Test Functions and Datasets. Available: http://www.sfu.ca/~ssurjano.
[111] Ali R. Al-Roomi. Unconstrained Single-Objective Benchmark Functions Repository. Available: https://www.al-roomi.org/benchmarks/unconstrained.
[112] Mclaughlin M E. An Introduction To Everywhere Continuous, Nowhere Differentiable Functions[J]. 2013.
[113] Ng A Y, Jordan M I, Weiss Y. On spectral clustering: Analysis and an algorithm[C]//Advances in neural information processing systems. 2002: 849-856.
[114] Hartigan J A, Wong M A. Algorithm AS 136: A k-means clustering algorithm[J]. Journal of the royal statistical society. Series c (applied statistics), 1979, 28(1): 100-108.
[115] Da B, Ong Y S, Feng L, et al. Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results[J]. arXiv preprint arXiv:1706.03470, 2017.
[116] Pizzuti C. Ga-net: A genetic algorithm for community detection in social networks[C]//International conference on parallel problem solving from nature. Springer, Berlin, Heidelberg, 2008: 1081-1090.
[117] He S, Jia G, Zhu Z, et al. Cooperative co-evolutionary module identification with application to cancer disease module discovery[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 874-891.
[118] Dickison M E, Magnani M, Rossi L. Multilayer social networks[M]. Cambridge University Press, 2016.
[119] Barber M J, Clark J W. Detecting network communities by propagating labels under constraints[J]. Physical Review E, 2009, 80(2): 026129.
[120] Langdon W B, Poli R. Foundations of genetic programming[M]. Springer Science & Business Media, 2013.
[121] Beyer H G, Schwefel H P. Evolution strategies–a comprehensive introduction[J]. Natural computing, 2002, 1(1): 3-52.
[122] Bäck T, Rudolph G, Schwefel H P. Evolutionary programming and evolution strategies: Similarities and differences[C]//In Proceedings of the Second Annual Conference on Evolutionary Programming. 1993.
[123] Dorigo M, Birattari M, Stutzle T. Ant colony optimization[J]. IEEE computational intelligence magazine, 2006, 1(4): 28-39.
[124] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied mathematics and computation, 2009, 214(1): 108-132.
[125] Teng Z, Lv J, Guo L. An improved hybrid grey wolf optimization algorithm[J]. Soft computing, 2019, 23(15): 6617-6631.
[126] Xie J, Kelley S, Szymanski B K. Overlapping community detection in networks: The state-of-the-art and comparative study[J]. Acm computing surveys (csur), 2013, 45(4): 1-35.
[127] Yang J, Leskovec J. Overlapping community detection at scale: a nonnegative matrix factorization approach[C]//Proceedings of the sixth ACM international conference on Web search and data mining. 2013: 587-596.
[128] Psorakis I, Roberts S, Ebden M, et al. Overlapping community detection using bayesian non-negative matrix factorization[J]. Physical Review E, 2011, 83(6): 066114.
[129] Whang J J, Gleich D F, Dhillon I S. Overlapping community detection using seed set expansion[C]//Proceedings of the 22nd ACM international conference on information & knowledge management. 2013: 2099-2108.
[130] Whang J J, Gleich D F, Dhillon I S. Overlapping community detection using neighborhood-inflated seed expansion[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(5): 1272-1284.
[131] Liu C, Liu J, Jiang Z. A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks[J]. IEEE transactions on cybernetics, 2014, 44(12): 2274-2287.
[132] Zhao X, Yang B, Liu X, et al. Statistical inference for community detection in signed networks[J]. Physical Review E, 2017, 95(4): 042313.
[133] Li Y, Liu J, Liu C. A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks[J]. Soft Computing, 2014, 18(2): 329-348.
[134] Sun R, Chen C, Wang X, et al. Stable community detection in signed social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020.
[135] Baumes J, Goldberg M K, Krishnamoorthy M S, et al. Finding communities by clustering a graph into overlapping subgraphs[J]. IADIS AC, 2005, 5: 97-104.
[136] Camuto A, Willetts M, Şimşekli U, et al. Explicit regularisation in gaussian noise injections[J]. arXiv preprint arXiv:2007.07368, 2020.
[137] Zhang X, Cao G. Transient community detection and its application to data forwarding in delay tolerant networks[J]. IEEE/ACM transactions on networking, 2017, 25(5): 2829-2843.
[138] Nan D, Zhang X. Prediction of hot regions in protein-protein interactions based on complex network and community detection[C]//2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2013: 17-23.
[139] Chae B K. A General framework for studying the evolution of the digital innovation ecosystem: The case of big data[J]. International Journal of Information Management, 2019, 45: 83-94.
[140] Ferrara E, De Meo P, Catanese S, et al. Detecting criminal organizations in mobile phone networks[J]. Expert Systems with Applications, 2014, 41(13): 5733-5750.
[141] Wang S, Gong M, Liu W, et al. Preventing epidemic spreading in networks by community detection and memetic algorithm[J]. Applied Soft Computing, 2020, 89: 106118.
[142] Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to algorithms[M]. MIT press, 2009.
[143] Lyu C, Shi Y, Sun L. A Novel Local Community Detection Method Using Evolutionary Computation[J]. IEEE transactions on cybernetics, 2021, 51(6): 3348-3360. (SCI收录,IF=11.448)
[144] Lyu C, Shi Y, Sun L. Machine learning based landscape smoothing for guiding evolutionary optimization[C]//2021 International Conference on Computational Intelligence and Security. 2021.
[145] Lyu C, Shi Y, Sun L. Community detection based on surrogate network[C]//16th International Conference on Bio-inspired Computing: Theories and Applications. 2021.
[146] Lyu C, Shi Y, Sun L. A Novel Multi-Task Optimization Algorithm Based on the Brainstorming Process[J]. IEEE Access, 2020, 8: 217134-217149.
[147] Lyu C, Shi Y, Sun L, et al. Community detection in multiplex networks based on evolutionary multi-task optimization and evolutionary clustering ensemble[J]. IEEE Transactions on Cybernetics, 2021.
[148] 刘建华, 杨荣华, 孙水华. 离散二进制粒子群算法分析[J]. 南京大学学报(自然科学版), 2011. 47(5): 504-514.

所在学位评定分委会
电子信息
国内图书分类号
TP399
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/610090
专题工学院_计算机科学与工程系
推荐引用方式
GB/T 7714
吕超. 基于演化计算的网络社区发现研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849557-吕超-计算机科学与工程(7878KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吕超]的文章
百度学术
百度学术中相似的文章
[吕超]的文章
必应学术
必应学术中相似的文章
[吕超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。