中文版 | English
题名

PEDOT:PSS WITH HIGH THERMOELECTRIC PERFORMANCE THROUGH ENERGY FILTERING

姓名
姓名拼音
LI Changan
学号
11955009
学位类型
博士
学位专业
哲学
导师
Aung Ko Ko KYAW
导师单位
电子与电气工程系
论文答辩日期
2023-11-16
论文提交日期
2023-12-04
学位授予单位
新加坡国立大学
学位授予地点
新加坡
摘要

As society and the economy continue to develop, there is an increasing demand for renewable energy sources. In this context, thermoelectric technology has gained significant attention, because it enables the direct conversion of abundant waste heat into electrical energy, offering a promising solution to address both energy needs and environmental concerns. Thermoelectric polymers have become a subject of great interest due to their distinctive advantages, such as low thermal conductivity, cost-effectiveness, non-toxicity or low toxicity, and high mechanical flexibility. Among these thermoelectric polymers, poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) has emerged as a promising candidate for future energy harvesting applications. However, PEDOT:PSS shows a low conductivity of less than 1 S cm-1 and its Seebeck coefficient is lower than that of the inorganic counterparts by around one order of magnitude, and thus it exhibits a lower ZT value. Because the Seebeck coefficient and conductivity are interdependent, treatments, especially energy filtering, are required to enhance the Seebeck coefficient. As a result, the motivation of this work is to fabricate highly conductive PEDOT:PSS with high Seebeck coefficient through energy filtering effect. The major research findings of this work are summarized below:

1. Simultaneous enhancements in the Seebeck coefficient and the conductivity of PEDOT:PSS are realized by adding ferroelectric barium titanate (BaTiO3) nanoparticles into the PEDOT:PSS matrix. The BaTiO3 nanoparticles can enhance the Seebeck coefficient from 23.8 to 40.7 μV K-1 and the power factor from 34.4 to 117.0 μW m-1 K-2, and the insulating BaTiO3 nanoparticles do not decrease but increase the conductivity of PEDOT:PSS. The conductivity of the continuous PEDOT:PSS phase in the composites can enhanced from 587 to 1552 S cm-1. The enhancement in the Seebeck coefficient is ascribed to the energy filtering of the low-energy charge carriers in PEDOT:PSS due to the spontaneous electric polarization of BaTiO3, and the increase in the conductivity is attributed to the secondary doping of PEDOT:PSS related to the high dielectric constant of the BaTiO3 nanoparticles.

2. We achieved the significant enhancement in the Seebeck coefficient and thus the overall TE properties of PEDOT:PSS by adding a zwitterion like Rhodamine 101 (R101), N-dodecyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate (DDMAP) or 1-(N,N-dimethylcarbamoyl)-4-(2-sulfoethyl) pyridinium hydroxide (DMCSP). In particular, R101 can enhance the Seebeck coefficient of the acid-then-base treated PEDOT:PSS from 21.2 to 61.6 μV K-1. The PEDOT:PSS/R101 film can exhibit a power factor (PF) of 546 μW m-1 K-2 and a ZT of 0.46 that is the highest for pure organic solid films. The enhancement in the Seebeck coefficient is ascribed to the energy filtering induced by the dipole moment of zwitterion and the π-π overlapping between conjugated Rhodamine 101 and PEDOT:PSS. To distinguish it from the conventional methods, this method is named as the molecular energy filtering.

3. A highly conductive PEDOT:PSS thin film was fabricated through spin-coating which is followed by sequential post treatment with 8 M of methanesulfonic acid (MSA) and 1M of sodium hydroxide (NaOH) aqueous solution. To investigate the relation between the enhancement of TE properties induced by energy filtering and the conjugation degree of dopants resulting in π-π overlapping with PEDOT:PSS, we choose naphthalene, anthracene and pyrene here as molecular dopants for post treatment. After post treatment with binary mixture of aromatic compounds and dimethyl sulfoxide, both pristine and acid-then-base treated PEDOT:PSS films show enhancement of Seebeck coefficient and power factor. The optimal power factor is achieved as 289 μW m-1 K-2 with Seebeck coefficient of 45.5 μV K-1 and ZT value of 0.27. The enhancements of TE properties are ascribed to the molecular energy filtering which is induced by π-π overlapping between conjugated aromatic compounds and PEDOT:PSS.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-12
参考文献列表

[1] M. Haras, T. Skotnicki, Nano Energy 2018, 54, 461.
[2] A. Shahsavari, M. Akbari, Renewable & Sustainable Energy Reviews 2018, 90, 275.
[3] G. J. Snyder, E. S. Toberer, Nat Mater 2008, 7, 105.
[4] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, G. Chen, Energy & Environmental Science 2012, 5, 5147.
[5] J. He, T. M. Tritt, Science 2017, 357, eaak9997.
[6] W. Shi, D. Wang, Z. G. Shuai, Advanced Electronic Materials 2019, 5, 1800882.
[7] K. A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L. D. Chen, M. I. Fedorov, E. Muller, B. B. Iversena, G. J. Snyder, Energy & Environmental Science2015, 8, 423.
[8] Q. Zhang, Y. Sun, W. Xu, D. Zhu, Adv Mater 2014, 26, 6829.
[9] L. E. Bell, Science 2008, 321, 1457.
[10]N. Nandihalli, C. J. Liu, T. Mori, Nano Energy 2020, 78, 105186.
[11]A. F. Ioffe, L. Stil'Bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch, G. Vineyard, Physics Today 1959, 12, 42.
[12]H. J. Goldsmid, Introduction to thermoelectricity, Vol. 121, Springer, 2016.
[13]C. Han, Q. Sun, Z. Li, S. X. Dou, Advanced Energy Materials 2016, 6, 1600498.
[14]L. P. Hu, H. J. Wu, T. J. Zhu, C. G. Fu, J. Q. He, P. J. Ying, X. B. Zhao, Advanced Energy Materials 2015, 5, 1500411.
[15]H. L. Cheng, X. He, Z. Fan, J. Y. Ouyang, Advanced Energy Materials 2019, 9, 1901085.143
[16]T. O. Poehler, H. E. Katz, Energy & Environmental Science 2012, 5, 8110.
[17]Y. L. Pei, J. Q. He, J. F. Li, F. Li, Q. J. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, L. D. Zhao, Npg Asia Materials 2013, 5, e47.
[18]C. Goupil, W. Seifert, K. Zabrocki, E. Muller, G. J. Snyder, Entropy 2011, 13, 1481.
[19]C. Han, Z. Li, S. X. Dou, Chinese Science Bulletin 2014, 59, 2073.
[20]M. He, F. Qiu, Z. Q. Lin, Energy & Environmental Science 2013, 6, 1352.
[21]R. Kroon, D. A. Mengistie, D. Kiefer, J. Hynynen, J. D. Ryan, L. Yu, C. Muller, Chem Soc Rev 2016, 45, 6147.
[22]C. B. Vining, Nature Materials 2009, 8, 83.
[23]W. S. Liu, X. Yan, G. Chen, Z. F. Ren, Nano Energy 2012, 1, 42.
[24]G. Z. Zuo, X. J. Liu, M. Fahlman, M. Kemerink, Advanced Functional Materials2018, 28, 1703280.
[25]H. S. Kim, Z. M. Gibbs, Y. L. Tang, H. Wang, G. J. Snyder, Apl Materials 2015, 3, 041506.
[26]A. A. Balandin, Nat Mater 2011, 10, 569.
[27]T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Advanced materials2017, 29, 1605884.
[28]L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Energy & Environmental Science 2013, 6, 3346.
[29]H. J. Wu, L. D. Zhao, F. S. Zheng, D. Wu, Y. L. Pei, X. Tong, M. G. Kanatzidis, J. Q. He, Nat Commun 2014, 5, 4515.144
[30]M. Hong, Z.-G. Chen, L. Yang, J. Zou, Nanoscale 2016, 8, 8681.
[31]Y. Z. Pei, A. D. LaLonde, N. A. Heinz, G. J. Snyder, Advanced Energy Materials2012, 2, 670.
[32]L. Yang, Z. G. Chen, M. S. Dargusch, J. Zou, Advanced Energy Materials 2018, 8, 1701797.
[33]J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554.
[34]Y. L. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H. S. Kim, M. B. Nardelli, S. Curtarolo, G. J. Snyder, Nature Materials 2015, 14, 1223.
[35]R. Al Rahal Al Orabi, N. A. Mecholsky, J. Hwang, W. Kim, J.-S. Rhyee, D. Wee, M. Fornari, Chemistry of Materials 2016, 28, 376.
[36]Y. Yu, C. J. Zhou, T. Ghosh, C. F. Schoen, Y. M. Zhou, S. Wahl, M. Raghuwanshi, P. Kerres, C. Bellin, A. Shukla, O. Cojocaru-Miredin, M. Wuttig, Advanced Materials2023, 35, 2300893.
[37]J. P. Heremans, B. Wiendlocha, A. M. Chamoire, Energy & Environmental Science2012, 5, 5510.
[38]H. Y. Lv, W. J. Lu, D. F. Shao, Y. P. Sun, Physical Review B 2014, 90, 085433.
[39]Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature 2011, 473, 66.
[40]Y. Pei, H. Wang, G. J. Snyder, Adv Mater 2012, 24, 6125.
[41]H. H. Xie, H. Wang, Y. Z. Pei, C. G. Fu, X. H. Liu, G. J. Snyder, X. B. Zhao, T. J. Zhu, Advanced Functional Materials 2013, 23, 5123.
[42]B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, J. R. Thompson, 145Physical Review B 1997, 56, 15081.
[43]L. M. Rogers, Journal of Physics D-Applied Physics 1968, 1, 845.
[44]W. Walukiewicz, J. W. Ager, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X. Li, R. E. Jones, J. D. Denlinger, Journal of Physics D-Applied Physics 2006, 39, R83.
[45]P. M. Fahey, P. B. Griffin, J. D. Plummer, Reviews of Modern Physics 1989, 61, 289.
[46]H. J. Queisser, E. E. Haller, Science 1998, 281, 945.
[47]J. Euvrard, Y. F. Yan, D. B. Mitzi, Nature Reviews Materials 2021, 6, 531.
[48]H. J. Wu, F. S. Zheng, D. Wu, Z. H. Ge, X. Y. Liu, J. Q. He, Nano Energy 2015, 13, 626.
[49]J. Yang, L. L. Xi, W. J. Qiu, L. H. Wu, X. Shi, L. D. Chen, J. H. Yang, W. Q. Zhang, C. Uher, D. J. Singh, Npj Computational Materials 2016, 2, 1.
[50]X. Shi, L. Chen, C. Uher, International Materials Reviews 2016, 61, 379.
[51]S. Ortega, M. Ibanez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid, A. Cabot, Chem Soc Rev 2017, 46, 3510.
[52]G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial, T. Caillat, International Materials Reviews 2003, 48, 45.
[53]G. S. Nolas, D. T. Morelli, T. M. Tritt, Annual Review of Materials Science 1999, 29, 89.
[54]Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, Journal of the American chemical society 2012, 134, 10031.
[55]Y. Z. Pei, A. F. May, G. J. Snyder, Advanced Energy Materials 2011, 1, 291.146
[56]Y. Pei, J. Lensch‐Falk, E. S. Toberer, D. L. Medlin, G. J. Snyder, Advanced Functional Materials 2011, 21, 241.
[57]E. Sachet, C. T. Shelton, J. S. Harris, B. E. Gaddy, D. L. Irving, S. Curtarolo, B. F. Donovan, P. E. Hopkins, P. A. Sharma, A. L. Sharma, J. Ihlefeld, S. Franzen, J. P. Maria, Nat Mater 2015, 14, 414.
[58]Y. Z. Pei, A. D. LaLonde, H. Wang, G. J. Snyder, Energy & Environmental Science2012, 5, 7963.
[59]T. J. Zhu, L. P. Hu, X. B. Zhao, J. He, Advanced Science 2016, 3, 1600004.
[60]Z. Wu, S. Zhang, Z. Liu, E. Mu, Z. Hu, Nano Energy 2022, 91, 106692.
[61]A. A. Sokol, S. A. French, S. T. Bromley, R. A. Catlow, H. J. van Dam, P. Sherwood, Faraday Discuss 2007, 134, 267.
[62]J. S. Park, S. Kim, Z. J. Xie, A. Walsh, Nature Reviews Materials 2018, 3, 194.
[63]M. Nikl, V. V. Laguta, A. Vedda, Physica Status Solidi B-Basic Solid State Physics2008, 245, 1701.
[64]S. Siebentritt, M. Igalson, C. Persson, S. Lany, Progress in Photovoltaics 2010, 18, 390.
[65]E. S. Toberer, A. F. May, G. J. Snyder, Chemistry of Materials 2010, 22, 624.
[66]V. Evang, J. Reindl, L. Schafer, A. Rochotzki, P. Pletzer-Zelgert, M. Wuttig, R. Mazzarello, Adv Mater 2022, 34, e2106868.
[67]O. Eibl, K. Nielsch, N. Peranio, F. Völklein, Thermoelectric Bi2Te3 Nanomaterials, John Wiley & Sons, 2015.
[68]L. P. Hu, T. J. Zhu, X. H. Liu, X. B. Zhao, Advanced Functional Materials 2014, 14724, 5211.
[69]P. Jood, R. J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R. W. Siegel, T. Borca￾Tasciuc, S. X. Dou, G. Ramanath, Nano Lett 2011, 11, 4337.
[70]G. K. Ren, S. Y. Wang, Y. C. Zhu, K. J. Ventura, X. Tan, W. Xu, Y. H. Lin, J. H. Yang, C. W. Nan, Energy & Environmental Science 2017, 10, 1590.
[71]Y. Q. Liu, X. M. Zhang, P. F. Nan, B. Zou, Q. T. Zhang, Y. X. Hou, S. Li, Y. R. Gong, Q. F. Liu, B. H. Ge, O. Cojocaru-Miredin, Y. Yu, Y. S. Zhang, G. Chen, M. Wuttig, G. D. Tang, Advanced Functional Materials 2022, 32, 2209980.
[72]A. D. LaLonde, Y. Z. Pei, H. Wang, G. J. Snyder, Materials Today 2011, 14, 526.
[73]M. T. Dylla, J. J. Kuo, I. Witting, G. J. Snyder, Advanced Materials Interfaces 2019, 6, 1900222.
[74]A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 2008, 451, 163.
[75]A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Energy & Environmental Science 2009, 2, 466.
[76]M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Advanced Materials 2007, 19, 1043.
[77]L. M. Wang, J. Zhang, Y. T. Guo, X. Y. Chen, X. M. Jin, Q. Y. Yang, K. Zhang, S. R. Wang, Y. P. Qiu, Carbon 2019, 148, 290.
[78]L. Yang, Z. G. Chen, G. Han, M. Hong, Y. C. Zou, J. Zou, Nano Energy 2015, 16, 367.
[79]W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, 148Phys Rev Lett 2006, 96, 045901.
[80]B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, G. Chen, Phys Rev Lett 2015, 114, 115901.
[81]J. F. Li, W. S. Liu, L. D. Zhao, M. Zhou, Npg Asia Materials 2010, 2, 152.
[82]Y. C. Lan, A. J. Minnich, G. Chen, Z. F. Ren, Advanced Functional Materials 2010, 20, 357.
[83]J. H. Yang, H. L. Yip, A. K. Y. Jen, Advanced Energy Materials 2013, 3, 549.
[84]W. Kim, Journal of Materials Chemistry C 2015, 3, 10336.
[85]X. L. Shi, J. Zou, Z. G. Chen, Chem Rev 2020, 120, 7399.
[86]B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, R. A. Segalman, Nature Reviews Materials 2016, 1, 1.
[87]C. Gayner, K. K. Kar, Progress in Materials Science 2016, 83, 330.
[88]M. N. Hasan, H. Wahid, N. Nayan, M. S. M. Ali, International Journal of Energy Research 2020, 44, 6170.
[89]R. Freer, D. Ekren, T. Ghosh, K. Biswas, P. F. Qiu, S. Wan, L. D. Chen, S. Han, C. G. Fu, T. J. Zhu, A. K. M. A. Shawon, A. Zevalkink, K. Imasato, G. J. Snyder, M. Ozen, K. Saglik, U. Aydemir, R. Cardoso-Gil, E. Svanidze, R. Funahashi, A. V. Powell, S. Mukherjee, S. Tippireddy, P. Vaqueiro, F. Gascoin, T. Kyratsi, P. Sauerschnig, T. Mori, Journal of Physics-Energy 2022, 4, 022002.
[90]Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. L. Cui, Sustainable Energy Technologies and Assessments 2020, 37, 100604.
[91]H. J. Goldsmid, H. J. Goldsmid, Introduction to Thermoelectricity 2016, 85.149
[92]J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew Chem Int Ed Engl 2009, 48, 8616.
[93]Y. Yu, D. S. He, S. Y. Zhang, O. Cojocaru-Miredin, T. Schwarz, A. Stoffers, X. Y. Wang, S. Q. Zheng, B. Zhu, C. Scheu, D. Wu, J. Q. He, M. Wuttig, Z. Y. Huang, F. Q. Zu, Nano Energy 2017, 37, 203.
[94]B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 2008, 320, 634.
[95]H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, Q. Doraghi, L. Ahmad, L. Norman, B. Axcell, L. Wrobel, S. Dai, International Journal of Thermofluids 2021, 9, 100063.
[96]S. Chandra, K. Biswas, J Am Chem Soc 2019, 141, 6141.
[97]X. L. Shi, A. Wu, T. L. Feng, K. Zheng, W. D. Liu, Q. Sun, M. Hong, S. T. Pantelides, Z. G. Chen, J. Zou, Advanced Energy Materials 2019, 9, 1803242.
[98]C. Chang, M. Wu, D. He, Y. Pei, C. F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J. F. Li, J. He, L. D. Zhao, Science 2018, 360, 778.
[99]M. Li, D. L. Cortie, J. X. Liu, D. H. Yu, S. M. K. N. Islam, L. L. Zhao, D. R. G. Mitchell, R. A. Mole, M. B. Cortie, S. X. Dou, X. L. Wang, Nano Energy 2018, 53, 993.
[100] X. Shi, J. Yang, J. R. Salvador, M. F. Chi, J. Y. Cho, H. Wang, S. Q. Bai, J. H. Yang, W. Q. Zhang, L. D. Chen, Journal of the American Chemical Society 2011, 133, 7837.
[101] Y. L. Tang, Y. T. Qiu, L. L. Xi, X. Shi, W. Q. Zhang, L. D. Chen, S. M. Tseng, 150151S. W. Chen, G. J. Snyder, Energy & Environmental Science 2014, 7, 812.
[102] X. Shi, J. Yang, S. Q. Bai, J. H. Yang, H. Wang, M. F. Chi, J. R. Salvador, W. Q. Zhang, L. D. Chen, W. Wong-Ng, Advanced Functional Materials 2010, 20, 755.
[103] J. He, S. N. Girard, J. C. Zheng, L. Zhao, M. G. Kanatzidis, V. P. Dravid, Adv Mater 2012, 24, 4440.
[104] J. Zhang, D. Wu, D. S. He, D. Feng, M. J. Yin, X. Y. Qin, J. Q. He, Advanced Materials 2017, 29, 1703148.
[105] B. Xu, M. T. Agne, T. L. Feng, T. C. Chasapis, X. L. Ruan, Y. L. Zhou, H. M. Zheng, J. H. Bahk, M. G. Kanatzidis, G. J. Snyder, Y. Wu, Advanced Materials 2017, 29.
[106] Y. Pei, A. D. LaLonde, N. A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, G. J. Snyder, Adv Mater 2011, 23, 5674.
[107] M. Wolf, R. Hinterding, A. Feldhoff, Entropy 2019, 21, 1058.
[108] E. S. Toberer, A. Zevalkink, N. Crisosto, G. J. Snyder, Advanced Functional Materials 2010, 20, 4375.
[109] S. Ohno, U. Aydemir, M. Amsler, J. H. Pohls, S. Chanakian, A. Zevalkink, M. A. White, S. K. Bux, C. Wolverton, G. J. Snyder, Advanced Functional Materials 2017, 27, 1606361.
[110] J. Shuai, J. Mao, S. W. Song, Q. Zhu, J. F. Sun, Y. M. Wang, R. He, J. W. Zhou, G. Chen, D. J. Singh, Z. F. Ren, Energy & Environmental Science 2017, 10, 799.
[111] T. Yang, T. Cheng, RSC Advances 2017, 7, 44659.
[112] Q. Wen, C. Chang, L. Pan, X. T. Li, T. Yang, H. H. Guo, Z. H. Wang, J. Zhang, 152F. Xu, Z. D. Zhang, G. D. Tang, Journal of Materials Chemistry A 2017, 5, 13392.
[113] J. P. Dismukes, E. Ekstrom, D. S. Beers, E. F. Steigmeier, I. Kudman, Journal of Applied Physics 1964, 35, 2899.
[114] A. Usenko, D. Moskovskikh, A. Korotitskiy, M. Gorshenkov, E. Zakharova, A. Fedorov, Y. Parkhomenko, V. Khovaylo, Scripta Materialia 2018, 146, 295.
[115] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem Rev 2012, 112, 2208.
[116] X. Qian, J. Zhou, G. Chen, Nat Mater 2021, 20, 1188.
[117] J. Liu, G. Ye, B. V. Zee, J. Dong, X. Qiu, Y. Liu, G. Portale, R. C. Chiechi, L. J. A. Koster, Adv Mater 2018, 30, e1804290.
[118] W. Zhao, J. Ding, Y. Zou, C. A. Di, D. Zhu, Chem Soc Rev 2020, 49, 7210.
[119] L. Deng, G. M. Chen, Nano Energy 2021, 80, 105448.
[120] N. Raveendran, T. Ghosh, V. Ignatious, V. Darshan, N. Jacob, B. Deb, C. Vijayakumar, Materials Today Energy 2023, 34, 101296.
[121] C. R. Ryder, J. D. Wood, S. A. Wells, M. C. Hersam, ACS Nano 2016, 10, 3900.
[122] H. S. Lee, S. Bin Lee, Y. S. Kim, H. Kim, M. J. Kim, T. W. Yoon, D. K. Lee, J. H. Cho, Y. H. Kim, B. S. Kang, Chemical Engineering Journal 2023, 468, 143654.
[123] A. J. Heeger, Vol. 105, ACS Publications, 2001.
[124] M. Kertesz, C. H. Choi, S. Yang, Chem Rev 2005, 105, 3448.
[125] G. Malliaras, R. Friend, Physics Today 2005, 58, 53.
[126] A. G. MacDiarmid, Angewandte Chemie International Edition 2001, 40, 2581.
[127] M. Berggren, X. Crispin, S. Fabiano, M. P. Jonsson, D. T. Simon, E. Stavrinidou, K. Tybrandt, I. Zozoulenko, Adv Mater 2019, 31, e1805813.
[128] X. L. Cheng, J. Pan, Y. Zhao, M. Liao, H. S. Peng, Advanced Energy Materials2018, 8, 1702184.
[129] Y. Shi, L. J. Pan, B. R. Liu, Y. Q. Wang, Y. Cui, Z. A. Bao, G. H. Yu, Journal of Materials Chemistry A 2014, 2, 6086.
[130] Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun, H. Peng, Adv Mater 2018, 30, e1704261.
[131] W. G. Lu, J. Z. Gu, L. Jiang, M. Y. Tan, T. B. Lu, Crystal Growth & Design2008, 8, 192.
[132] J. Heine, K. Muller-Buschbaum, Chem Soc Rev 2013, 42, 9232.
[133] X. Meng, Y. Song, H. Hou, Y. Fan, G. Li, Y. Zhu, Inorg Chem 2003, 42, 1306.
[134] G. Givaja, P. Amo-Ochoa, C. J. Gomez-Garcia, F. Zamora, Chem Soc Rev 2012, 41, 115.
[135] X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. A. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, Nat Commun 2015, 6, 7408.
[136] Y. Z. Zheng, Z. P. Zheng, X. M. Chen, Coordination Chemistry Reviews 2014, 258, 1.
[137] R. Sanchis-Gual, M. Coronado-Puchau, T. Mallah, E. Coronado, Coordination Chemistry Reviews 2023, 480, 215025.
[138] Y. Chen, M. Tang, Y. Wu, X. Su, X. Li, S. Xu, S. Zhuo, J. Ma, D. Yuan, C. Wang, W. Hu, Angew Chem Int Ed Engl 2019, 58, 14731.
[139] A. U. Czaja, N. Trukhan, U. Muller, Chem Soc Rev 2009, 38, 1284.
[140] L. J. Murray, M. Dinca, J. R. Long, Chem Soc Rev 2009, 38, 1294.153
[141] B. Chen, S. Xiang, G. Qian, Acc Chem Res 2010, 43, 1115.
[142] A. B. Kaiser, V. Skakalova, Chem Soc Rev 2011, 40, 3786.
[143] Y. Lu, D. J. Young, Dalton Trans 2020, 49, 7644.
[144] A. K. Menon, R. M. W. Wolfe, S. Kommandur, S. K. Yee, Advanced Electronic Materials 2019, 5, 1800884.
[145] D. Zhou, H. Zhang, H. Zheng, Z. Xu, H. Xu, H. Guo, P. Li, Y. Tong, B. Hu, L. Chen, Small 2022, 18, e2200679.
[146] D. Huang, H. Yao, Y. Cui, Y. Zou, F. Zhang, C. Wang, H. Shen, W. Jin, J. Zhu, Y. Diao, W. Xu, C. A. Di, D. Zhu, J Am Chem Soc 2017, 139, 13013.
[147] D. Huang, C. Wang, Y. Zou, X. Shen, Y. Zang, H. Shen, X. Gao, Y. Yi, W. Xu, C. A. Di, D. Zhu, Angew Chem Int Ed Engl 2016, 55, 10672.
[148] J. J. Tan, Z. H. Chen, D. G. Wang, S. H. Qin, X. Xiao, D. S. Xie, D. Q. Liu, L. Wang, Journal of Materials Chemistry A 2019, 7, 24982.
[149] J. Liu, B. van der Zee, R. Alessandri, S. Sami, J. Dong, M. I. Nugraha, A. J. Barker, S. Rousseva, L. Qiu, X. Qiu, N. Klasen, R. C. Chiechi, D. Baran, M. Caironi, T. D. Anthopoulos, G. Portale, R. W. A. Havenith, S. J. Marrink, J. C. Hummelen, L. J. A. Koster, Nat Commun 2020, 11, 5694.
[150] W. Shi, T. Q. Deng, Z. M. Wong, G. Wu, S. W. Yang, Npj Computational Materials 2021, 7, 107.
[151] R. Sato, Y. Kiyota, T. Kadoya, T. Kawamoto, T. Mori, Rsc Advances 2016, 6, 41040.
[152] Y. Kiyota, T. Kadoya, K. Yamamoto, K. Iijima, T. Higashino, T. Kawamoto, K. 154Takimiya, T. Mori, J Am Chem Soc 2016, 138, 3920.
[153] L. V. Kayser, D. J. Lipomi, Adv Mater 2019, 31, e1806133.
[154] R. Gangopadhyay, B. Das, M. R. Molla, Rsc Advances 2014, 4, 43912.
[155] H. Shi, C. C. Liu, Q. L. Jiang, J. K. Xu, Advanced Electronic Materials 2015, 1, 1500017.
[156] J. Y. Ouyang, Acs Applied Materials & Interfaces 2013, 5, 13082.
[157] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, K. Reuter, PEDOT: principles and applications of an intrinsically conductive polymer, CRC press, 2010.
[158] S. Kirchmeyer, K. Reuter, Journal of Materials Chemistry 2005, 15, 2077.
[159] X. Liu, X.-L. Shi, L. Zhang, W.-D. Liu, Y. Yang, Z.-G. Chen, Journal of Materials Science & Technology 2023, 132, 81.
[160] J. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold, D. R. T. Zahnd, T. Gessner, Journal of Materials Chemistry A 2013, 1, 7576.
[161] C. M. Palumbiny, F. Liu, T. P. Russell, A. Hexemer, C. Wang, P. Muller￾Buschbaum, Adv Mater 2015, 27, 3391.
[162] Y. J. Xia, J. Y. Ouyang, Journal of Materials Chemistry 2011, 21, 4927.
[163] S. Y. Zhang, Z. Fan, X. W. Wang, Z. Y. Zhang, J. Y. Ouyang, Journal of Materials Chemistry A 2018, 6, 7080.
[164] Z. Fan, D. H. Du, Z. M. Yu, P. C. Li, Y. J. Xia, J. Y. Ouyang, Acs Applied Materials & Interfaces 2016, 8, 23204.
[165] Z. M. Yu, Y. J. Xia, D. H. Du, J. Y. Ouyang, Acs Applied Materials & Interfaces1552016, 8, 11629.
[166] G. H. Kim, L. Shao, K. Zhang, K. P. Pipe, Nat Mater 2013, 12, 719.
[167] D. L. Stevens, G. A. Gamage, Z. Ren, J. C. Grunlan, RSC Adv 2020, 10, 11800.
[168] X. Wang, P. Liu, Q. Jiang, W. Zhou, J. Xu, J. Liu, Y. Jia, X. Duan, Y. Liu, Y. Du, ACS applied materials & interfaces 2018, 11, 2408.
[169] Y. B. Xu, Z. M. Liu, X. Z. Wei, J. M. Wu, J. Y. Guo, B. Zhao, H. Wang, S. P. Chen, Y. K. Dou, Synthetic Metals 2021, 271, 116628.
[170] J. Ouyang, Displays 2013, 34, 423.
[171] Z. Fan, J. Y. Ouyang, Advanced Electronic Materials 2019, 5, 1800769.
[172] J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Synthetic Metals 2002, 126, 311.
[173] J. Ouyang, Q. F. Xu, C. W. Chu, Y. Yang, G. Li, J. Shinar, Polymer 2004, 45, 8443.
[174] J. Y. Ouyang, C. W. Chi, F. C. Chen, Q. F. Xi, Y. Yang, Advanced Functional Materials 2005, 15, 203.
[175] C. Yi, A. Wilhite, L. Zhang, R. Hu, S. S. Chuang, J. Zheng, X. Gong, ACS Appl Mater Interfaces 2015, 7, 8984.
[176] B. H. Fan, X. G. Mei, J. Y. Ouyang, Macromolecules 2008, 41, 5971.
[177] Y. J. Xia, K. Sun, J. Y. Ouyang, Energy & Environmental Science 2012, 5, 5325.
[178] A. K. K. Kyaw, T. A. Yemata, X. Z. Wang, S. L. Lim, W. S. Chin, K. Hippalgaonkar, J. W. Xu, Macromolecular Materials and Engineering 2018, 303, 1700429.156
[179] Y. J. Xia, J. Y. Ouyang, Macromolecules 2009, 42, 4141.
[180] Y. J. Xia, J. Y. Ouyang, Acs Applied Materials & Interfaces 2010, 2, 474.
[181] D. A. Mengistie, C. H. Chen, K. M. Boopathi, F. W. Pranoto, L. J. Li, C. W. Chu, ACS Appl Mater Interfaces 2015, 7, 94.
[182] A. G. El-Shamy, Materials Chemistry and Physics 2021, 257, 123762.
[183] H. Zhou, M. H. Chua, Q. Zhu, J. W. Xu, Composites Communications 2021, 27, 100877.
[184] H. He, J. Y. Ouyang, Accounts of Materials Research 2020, 1, 146.
[185] T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Z. Wang, J. Song, W. S. Chin, J. W. Xu, Materials Advances 2020, 1, 3233.
[186] T. A. Yemata, A. K. K. Kyaw, Y. Zheng, X. Wang, Q. Zhu, W. S. Chin, J. Xu, Polymer International 2020, 69, 84.
[187] N. X. Wen, Z. Fan, S. T. Yang, Y. P. Zhao, T. Z. Cong, S. H. Xu, H. Zhang, J. Z. Wang, H. Huang, C. W. Li, L. J. Pan, Nano Energy 2020, 78, 105361.
[188] Y. J. Xia, K. Sun, J. Y. Ouyang, Advanced Materials 2012, 24, 2436.
[189] X. Li, C. Liu, W. Zhou, X. Duan, Y. Du, J. Xu, C. Li, J. Liu, Y. Jia, P. Liu, Q. Jiang, C. Luo, C. Liu, F. Jiang, ACS Appl Mater Interfaces 2019, 11, 8138.
[190] T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Wang, J. Song, W. S. Chin, J. Xu, RSC Adv 2020, 10, 1786.
[191] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat Mater 2011, 10, 429.
[192] M. Culebras, C. M. Gomez, A. Cantarero, Journal of Materials Chemistry A1572014, 2, 10109.
[193] O. Bubnova, M. Berggren, X. Crispin, J Am Chem Soc 2012, 134, 16456.
[194] N. Saxena, M. Coric, A. Greppmair, J. Wernecke, M. Pfluger, M. Krumrey, M. S. Brandt, E. M. Herzig, P. Muller-Buschbaum, Advanced Electronic Materials 2017, 3, 1700181.
[195] O. Bubnova, Z. U. Khan, H. Wang, S. Braun, D. R. Evans, M. Fabretto, P. Hojati-Talemi, D. Dagnelund, J. B. Arlin, Y. H. Geerts, S. Desbief, D. W. Breiby, J. W. Andreasen, R. Lazzaroni, W. M. Chen, I. Zozoulenko, M. Fahlman, P. J. Murphy, M. Berggren, X. Crispin, Nat Mater 2014, 13, 190.
[196] L. Zhang, H. Deng, S. Y. Liu, Q. Zhang, F. Chen, Q. Fu, Rsc Advances 2015, 5, 105592.
[197] H. Park, S. H. Lee, F. S. Kim, H. H. Choi, I. W. Cheong, J. H. Kim, Journal of Materials Chemistry A 2014, 2, 6532.
[198] S. H. Lee, H. Park, W. Son, H. H. Choi, J. H. Kim, Journal of Materials Chemistry A 2014, 2, 13380.
[199] N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, J. P. Simonato, Journal of Materials Chemistry C 2014, 2, 1278.
[200] F. L. E. Jakobsson, X. Crispin, L. Lindell, A. Kanciurzewska, M. Fahlman, W. R. Salaneck, M. Berggren, Chemical Physics Letters 2006, 433, 110.
[201] E. Nasybulin, S. Wei, M. Cox, I. Kymissis, K. Levon, The Journal of Physical Chemistry C 2011, 115, 4307.
[202] C. Yi, L. Zhang, R. D. Hu, S. S. C. Chuang, J. Zheng, X. Gong, Journal of 158159Materials Chemistry A 2016, 4, 12730.
[203] L. Stepien, A. Roch, S. Schlaier, I. Dani, A. Kiriy, F. Simon, M. v. Lukowicz, C. Leyens, Energy Harvesting and Systems 2016, 3, 101.
[204] Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, T. Ishida, ACS Appl Mater Interfaces 2016, 8, 2054.
[205] F. F. Kong, C. C. Liu, H. J. Song, J. K. Xu, Y. Huang, H. F. Zhu, J. M. Wang, Synthetic Metals 2013, 185, 31.
[206] Z. Y. Zhu, C. C. Liu, Q. L. Jiang, H. Shi, F. X. Jiang, J. K. Xu, J. H. Xiong, E. D. Liu, Journal of Materials Science-Materials in Electronics 2015, 26, 8515.
[207] T. C. Tsai, H. C. Chang, C. H. Chen, Y. C. Huang, W. T. Whang, Organic Electronics 2014, 15, 641.
[208] S. H. Lee, H. Park, S. Kim, W. Son, I. W. Cheong, J. H. Kim, Journal of Materials Chemistry A 2014, 2, 7288.
[209] I. Paulraj, T. F. Liang, T. S. Yang, C. H. Wang, J. L. Chen, Y. W. Wang, C. J. Liu, ACS Appl Mater Interfaces 2021, 13, 42977.
[210] S. D. Xu, M. Hong, X. L. Shi, M. Li, Q. Sun, Q. X. Chen, M. Dargusch, J. Zou, Z. G. Chen, Energy & Environmental Science 2020, 13, 3480.
[211] C. Wang, K. Sun, J. H. Fu, R. Chen, M. Li, Z. G. Zang, X. X. Liu, B. C. Li, H. Gong, I. Y. Ouyang, Advanced Sustainable Systems 2018, 2, 1800085.
[212] Z. Fan, P. C. Li, D. H. Du, J. Y. Ouyang, Advanced Energy Materials 2017, 7, 1602116.
[213] S. D. Xu, M. Hong, X. L. Shi, Y. Wang, L. Ge, Y. Bai, L. Z. Wang, M. Dargusch, J. Zou, Z. G. Chen, Chemistry of Materials 2019, 31, 5238.
[214] X. Guan, J. Y. Ouyang, Ccs Chemistry 2021, 3, 2415.
[215] Z. M. Liang, M. J. Boland, K. Butrouna, D. R. Strachan, K. R. Graham, Journal of Materials Chemistry A 2017, 5, 15891.
[216] W. S. Kim, G. Anoop, I. S. Jeong, H. J. Lee, H. B. Kim, S. H. Kim, G. W. Goo, H. Lee, H. J. Lee, C. Kim, J. H. Lee, B. S. Mun, J. W. Park, E. Lee, J. Y. Jo, Nano Energy 2020, 67, 104207.
[217] H. Li, S. Q. Liu, P. C. Li, D. Yuan, X. Zhou, J. T. Sun, X. H. Lu, C. B. He, Carbon 2018, 136, 292.
[218] S. Q. Liu, H. Li, C. B. He, Carbon 2019, 149, 25.
[219] J. Choi, J. Y. Lee, S. S. Lee, C. R. Park, H. Kim, Advanced Energy Materials2016, 6, 1502181.
[220] S. Q. Liu, J. H. Kong, H. M. Chen, C. B. He, Acs Applied Energy Materials2019, 2, 8843.
[221] K. Zhang, J. Qiu, S. Wang, Nanoscale 2016, 8, 8033.
[222] S. Q. Liu, H. Li, X. T. Fan, C. B. He, Composites Science and Technology 2022, 221, 109347.
[223] D. Zhao, H. Wang, Z. U. Khan, J. C. Chen, R. Gabrielsson, M. P. Jonsson, M. Berggren, X. Crispin, Energy & Environmental Science 2016, 9, 1450.
[224] Z. Fan, D. H. Du, X. Guan, J. Y. Ouyang, Nano Energy 2018, 51, 481.
[225] X. Guan, H. L. Cheng, J. Y. Ouyang, Journal of Materials Chemistry A 2018, 6, 19347.160
[226] O. Philips’Gloeilampenfabrieken, Philips Res. Rep 1958, 13, 1.
[227] J. Martin, Rev Sci Instrum 2012, 83, 065101.
[228] R. L. Kallaher, C. A. Latham, F. Sharifi, Rev Sci Instrum 2013, 84, 013907.
[229] H. F. Wang, W. G. Chu, G. M. Chen, Advanced Electronic Materials 2019, 5, 1900167.
[230] K. Yusupov, A. Vomiero, Advanced Functional Materials 2020, 30, 2002015.
[231] F. Kim, B. Kwon, Y. Eom, J. E. Lee, S. Park, S. Jo, S. H. Park, B. S. Kim, H. J. Im, M. H. Lee, T. S. Min, K. T. Kim, H. G. Chae, W. P. King, J. S. Son, Nature Energy2018, 3, 301.
[232] E. Moulin, J. J. Cid, N. Giuseppone, Advanced Materials 2013, 25, 477.
[233] W. Shi, Z. M. Wong, T. Deng, G. Wu, S. W. Yang, Advanced Functional Materials 2021, 31, 2007438.
[234] H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, J. Ouyang, Macromol Rapid Commun 2018, 39, e1700727.
[235] X. Guan, W. Feng, X. Z. Wang, R. Venkatesh, J. Y. Ouyang, Acs Applied Materials & Interfaces 2020, 12, 13013.
[236] Y. Y. Jiang, T. F. Liu, Y. H. Zhou, Advanced Functional Materials 2020, 30, 2006213.
[237] Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, ACS Nano 2010, 4, 2445.
[238] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 161515, 384.
[239] K. P. Pernstich, B. Rossner, B. Batlogg, Nat Mater 2008, 7, 321.
[240] A. Kanwat, V. S. Rani, J. Jang, New Journal of Chemistry 2018, 42, 16075.
[241] A. K. Jha, K. Prasad, Colloids Surf B Biointerfaces 2010, 75, 330.
[242] C. Gayner, Y. Amouyal, Advanced Functional Materials 2020, 30, 1901789.
[243] S. O. Kasap, Electronic materials and Devices, McGraw-Hill New York, 2006.
[244] Y. Park, L. Muller-Meskamp, K. Vandewal, K. Leo, Applied Physics Letters2016, 108, 253302.
[245] A. Kanwat, J. Jang, Journal of Materials Chemistry C 2014, 2, 901.
[246] Y. J. Xia, J. Fang, P. C. Li, B. M. Zhang, H. Y. Yao, J. S. Chen, J. Ding, J. Y. Ouyang, Acs Applied Materials & Interfaces 2017, 9, 19001.
[247] X. Guan, E. Yildirim, Z. Fan, W. H. Lu, B. C. Li, K. Y. Zeng, S. W. Yang, J. Y. Ouyang, Journal of Materials Chemistry A 2020, 8, 13600.
[248] Z. Fan, D. Du, H. Yao, J. Ouyang, ACS Appl Mater Interfaces 2017, 9, 11732.
[249] S. D. Kang, G. J. Snyder, Nature Materials 2017, 16, 252.
[250] C. Badre, L. Marquant, A. M. Alsayed, L. A. Hough, Advanced Functional Materials 2012, 22, 2723.
[251] I. Petsagkourakis, N. Kim, K. Tybrandt, I. Zozoulenko, X. Crispin, Advanced Electronic Materials 2019, 5, 1800918.
[252] S. Kee, N. Kim, B. S. Kim, S. Park, Y. H. Jang, S. H. Lee, J. Kim, J. Kim, S. Kwon, K. Lee, Adv Mater 2016, 28, 8625.162
[253] X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, M. Berggren, Chemistry of Materials 2006, 18, 4354.
[254] L. V. Lingstedt, M. Ghittorelli, H. Lu, D. A. Koutsouras, T. Marszalek, F. Torricelli, N. I. Craciun, P. Gkoupidenis, P. W. M. Blom, Advanced Electronic Materials2019, 5, 1800804.
[255] F. L. Wu, P. C. Li, K. A. Sun, Y. L. Zhou, W. Chen, J. H. Fu, M. Li, S. R. Lu, D. S. Wei, X. S. Tang, Z. G. Zang, L. D. Sun, X. X. Liu, J. Y. Ouyang, Advanced Electronic Materials 2017, 3, 1700047.
[256] D. Ju, D. Kim, H. Yook, J. W. Han, K. Cho, Advanced Functional Materials2019, 29, 1905590.
[257] N. E. Coates, S. K. Yee, B. McCulloch, K. C. See, A. Majumdar, R. A. Segalman, J. J. Urban, Adv Mater 2013, 25, 1629.
[258] S. Y. Liu, H. Deng, Y. Zhao, S. J. Ren, Q. Fu, Rsc Advances 2015, 5, 1910.
[259] J. Y. Lim, S. Cho, H. Kim, Y. Seo, Acs Applied Energy Materials 2019, 2, 8219.
[260] Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, T. Ishida, Applied Physics Express2014, 7, 031601.
[261] X. Wang, A. K. K. Kyaw, C. Yin, F. Wang, Q. Zhu, T. Tang, P. I. Yee, J. Xu, RSC Adv 2018, 8, 18334.
[262] S. N. Patel, A. M. Glaudell, K. A. Peterson, E. M. Thomas, K. A. O'Hara, E. Lim, M. L. Chabinyc, Sci Adv 2017, 3, e1700434.
[263] I. H. Jung, C. T. Hong, U. H. Lee, Y. H. Kang, K. S. Jang, S. Y. Cho, Sci Rep1632017, 7, 44704.
[264] J. Ding, Z. Liu, W. Zhao, W. Jin, L. Xiang, Z. Wang, Y. Zeng, Y. Zou, F. Zhang, Y. Yi, Y. Diao, C. R. McNeill, C. A. Di, D. Zhang, D. Zhu, Angew Chem Int Ed Engl2019, 58, 18994.
[265] S. T. Keene, T. P. A. van der Pol, D. Zakhidov, C. H. L. Weijtens, R. A. J. Janssen, A. Salleo, Y. van de Burgt, Adv Mater 2020, 32, e2000270.
[266] Y. J. Xia, H. M. Zhang, J. Y. Ouyang, Journal of Materials Chemistry 2010, 20, 9740.
[267] T. Park, C. Park, B. Kim, H. Shin, E. Kim, Energy & Environmental Science2013, 6, 788.
[268] Y. Zhao, D. G. Truhlar, Theoretical Chemistry Accounts 2008, 120, 215.
[269] Y. Wang, C. A. Di, Y. Q. Liu, H. Kajiura, S. H. Ye, L. C. Cao, D. C. Wei, H. L. Zhang, Y. M. Li, K. Noda, Advanced Materials 2008, 20, 4442.
[270] S. K. Singh, X. Crispin, I. V. Zozoulenko, Journal of Physical Chemistry C2017, 121, 12270.
[271] Z. Zhu, C. Liu, Q. Jiang, H. Shi, J. Xu, F. Jiang, J. Xiong, E. Liu, Synthetic Metals 2015, 209, 313.
[272] T. C. Tsai, T. H. Chen, H. C. Chang, C. H. Chen, Y. C. Huang, W. T. Whang, Journal of Polymer Science Part A: Polymer Chemistry 2014, 52, 3303.
[273] J. Liu, X. Wang, D. Li, N. E. Coates, R. A. Segalman, D. G. Cahill, Macromolecules 2015, 48, 585.
[274] Y. P. Mamunya, V. Davydenko, P. Pissis, E. Lebedev, European polymer 164journal 2002, 38, 1887.
[275] C. Chang, L.-D. Zhao, Materials Today Physics 2018, 4, 50.
[276] H. Maeda, T. Maeda, K. Mizuno, Molecules 2012, 17, 5108.
[277] J. S. A. Ishibashi, C. Darrigan, A. Chrostowska, B. Li, S. Y. Liu, Dalton Trans2019, 48, 2807.
[278] A. Ding, J. Xu, G. Gu, G. Lu, X. Huang, Scientific reports 2017, 7, 12601.
[279] D. Liu, T. F. Liu, Y. P. Chen, L. Zou, D. Feng, K. Wang, Q. Zhang, S. Yuan, C. Zhong, H. C. Zhou, J Am Chem Soc 2015, 137, 7740.
[280] M. J. Perez-Alvite, M. Mosquera, L. Castedo, J. R. Granja, Amino Acids 2011, 41, 621.
[281] C. B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J. J. Martin, W. E. Jones, The Journal of Physical Chemistry B 2004, 108, 1537.
[282] Z. U. Khan, J. Edberg, M. M. Hamedi, R. Gabrielsson, H. Granberg, L. Wågberg, I. Engquist, M. Berggren, X. Crispin, Advanced Materials 2016, 28, 4556.
[283] W. Lin, B. Tian, P. Zhuang, J. Yin, C. Zhang, Q. Li, T. M. Shih, W. Cai, Nano Lett 2016, 16, 5737.
[284] T. Ozaki, K. Nishio, H. Weng, H. Kino, Physical Review B 2010, 81, 075422.
[285] M. Kertesz, Chemistry 2019, 25, 400.
[286] J. Calvo-Castro, M. Warzecha, A. R. Kennedy, C. J. McHugh, A. J. McLean, Crystal Growth & Design 2014, 14, 4849.
[287] G. A. DiLabio, E. R. Johnson, J Am Chem Soc 2007, 129, 6199.
[288] X. Hao, T. Hosokai, N. Mitsuo, S. Kera, K. Okudaira, K. Mase, N. Ueno, The 165Journal of Physical Chemistry B 2007, 111, 10365.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/610130
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Li ZA. PEDOT:PSS WITH HIGH THERMOELECTRIC PERFORMANCE THROUGH ENERGY FILTERING[D]. 新加坡. 新加坡国立大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11955009-李长安-电子与电气工程(5932KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李长安]的文章
百度学术
百度学术中相似的文章
[李长安]的文章
必应学术
必应学术中相似的文章
[李长安]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。