中文版 | English
题名

COMPUTATIONAL STUDIES ON THE SELECTIVITY AND REACTION MECHANISM OF SUPRAMOLECULAR CATALYSIS

姓名
姓名拼音
LIANG Rong
学号
11955015
学位类型
博士
学位专业
化学
导师
钟龙华
导师单位
化学系
论文答辩日期
2023-11-22
论文提交日期
2023-12-07
学位授予单位
新加坡国立大学
学位授予地点
新加坡
摘要

Nature’s enzymes inspire the design of supramolecular catalysts that can exhibit powerful catalysis. However, it remains a challenge to design supramolecular catalysts that can match the performance of enzymes. This thesis presents computational investigation into the reaction mechanism and selectivity of highly selective reactions catalyzed by different types of supramolecular catalysts. Several molecule features of supramolecular catalysts have been identified that hold the potential to enhance selectivity or reaction rate: a rigid cavity capable of distorting unfavorable product, π-π interactions that can stabilize the favorable transition state, and hydrogen bonds between supramolecular catalyst and substrate that facilitate the proximity of reactive groups. This thesis is expected to offer valuable insights into the reaction mechanism and selectivity of supramolecular catalysis, as well as further contribute to the development of novel supramolecular catalysts.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2024-01
参考文献列表

1. "Catalyst". IUPAC Compendium of Chemical Terminology. Blackwell Scientific Publications: Oxford. 2009.
2. Masel, R. I. Chemical Kinetics and Catalysis. Wiley-Interscience: New York, 2001.
3. Van Leeuwen, P. W. N. M.; Chadwick, J. C. Homogeneous Catalysts: Activity - Stability - Deactivation. Wiley-VCH: Weinheim. 2011.
4. Raymond, K. N.; Hastings, C. J.; Pluth, M. D.; Bergman, R. G. J. Am. Chem. Soc. 2010, 132, 6938-6940.
5. Van Leeuwen, P. W. N. M. Supramolecular catalysis, Weinheim: Wiley-VCH, 2008.
6. Brown, C.; Toste, F.; Bergman, R.; Raymond, K. Chem. Rev. 2015, 115, 3012-3035.
7. Lehn, J. Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
8. Steed, J. W.; Atwood, J. L. Supramolecular chemistry. John Wiley: Chichester, 2009.
9. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 2564-2571.
10. Olivo, G.; Capocasa, G.; Del Giudice, D.; Lanzalunga, O.; Di Stefano, S. Chem. Soc. Rev. 2021, 50, 7681-7724.
11. Cram, D. J. Angew. Chem., Int. Ed. Engl. 1986, 25, 1039-1134.
12. Wolfenden, R. Chem. Rev. 2006, 106, 3379-3396.
13. Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017-7036.
14. Cramer, F.; Kampe, W. J. Am. Chem. Soc. 1965, 87, 1115-1120.
15. VanEtten, R. L.; Sebastian, J. F.; Clowes, G. A.; Bender, M. L. J. Am. Chem. Soc. 1967, 89, 3242-3253.
16. Breslow, R.; Campbell, P. J. Am. Chem. Soc. 1969, 91, 3085-3085.
17. Breslow, R. Science 1982, 218, 532-537.
18. Breslow, R.; Czarniecki, M. F.; Emert, J.; Hamaguchi, H. J. Am. Chem. Soc. 1980, 102, 762-770.
19. Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Manimaran, T. L. J. Org. Chem. 1983, 48, 3619-3620.
20. Carlqvist, P.; Maseras, F. Chem. Commun. 2007, 7, 748-750.21. Guo, H.; Zhang, L. W.; Zhou, H.; Meng, W.; Ao, Y. F.; Wang, D. X. Angew. Chem. Int. Ed. 2020, 59, 2623-2627. 22. Ning, R.; Zhou, H.; Nie, S.-X.; Ao, Y.-F.; Wang, D.-X.; Wang, Q.-Q. Angew. Chem. Int. Ed. 2020, 59, 10894-1089823. Schill, G.; Zollenkopf, H. Nachr. Chem. Tech. 1967, 15, 149-152.24. Harrison, I. T.; Harrison, S. J. Am. Chem. Soc. 1967, 89, 5723-5724.25. Kwamen, C.; Niemeyer, J. Chem. Eur. J. 2021, 27, 175-186.26. Leigh, D. A.; Marcos, V.; Wilson, M. R. ACS Catal. 2014, 4, 4490-4497.27. Caputo, C. B.; Zhu, K.; Vukotic, V. N.; Loeb, S. J.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 960-96328. Tachibana, Y.; Kihara, N.; Takata, T. J. Am. Chem. Soc. 2004, 126, 3438-3439.29. Xu, K.; Nakazono, K.; Takata, T. Chem. Lett. 2016, 45, 1274-1276.30. Kwamen, C.; Niemeyer, J. Chem. Eur. J. 2021, 27, 175-186.31. Calles, M.; Puigcerver, I.; Alonso, D. A.; Alajarin, M.; M-Cuezva, A.; Berna, I.Chem. Sci. 2020, 11, 3629-3635.32. Kang, J.; Rebek, J., Jr. Nature 1997, 385, 50-52.33. Kang, J.; Santamarı´a, J.; Hilmersson, G.; Rebek, J., Jr. J. Am. Chem. Soc. 1998, 120, 7389-7390.34. Heinz, T.; Rudkevich, D. M.; Rebek, J., Jr. Nature 1998, 394,764-766.35. Chen, J.; Rebek, J., Jr. Org. Lett. 2002, 4, 327-329.36. Brown, C.; Toste, F.; Bergman, R.; Raymond, K., Chem. Rev. 2015, 115, 3012-3035.37. Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251-254.38. Murase, T.; Peschard, S.; Horiuchi, S.; Nishioka, Y.; Fujita, M. Supramol. Chem. 2011, 23, 199-208.39. Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2004, 43, 6748-6751.40. Hastings, C. J.; Pluth, M. D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2010, 132, 6938-6940.41. Hastings, C. J.; Backlund, M. P.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2011, 50, 10570-10573.42. Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975-982.43. Pahima, E.; Zhang, Q.; Tiefenbacher, K.; Major, D. T. J. Am. Chem. Soc. 2019, 141, 6234-6246.44. Chaudhuri, S.; Phelan, T.; Levine, M. Tetrahedron Lett. 2015, 56, 1619-1623.45. Chen, W.; Sun, L.; Tang, Z.; Ali, Z.; Wong, B.; Chang, C. Catalysts, 2018, 8, 51.46. Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H.-J.; Kim, K. Acc. Chem. Res. 2003, 36, 621-630. 47. Tehrani, F. N.; Assaf, K. I.; Hein, R.; Jensen, C. M.; Nugent, T. C.; Nau, W. M. ACS Catal. 2022, 12, 2261-2269.48. Daver, H.; Harvey, J. N.; Rebek, J., Jr.; Himo, F. J. Am. Chem. Soc. 2017, 139, 15494-15503.49. Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007, 316, 85-88.50. Frushicheva, M. P.; Mukherjee, S.; Warshel, A. J. Phys. Chem. B 2012, 116, 13353-13360.51. Brown, C. J.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2009, 131, 17530-17531.52. Ootani, Y.; Akinaga, Y.; Nakajima, T. J. Comput. Chem. 2015, 36, 459-466.53. Piskorz, T. K.; Martí-Centelles, V.; Young, T. A.; Lusby, P. J.; Duarte, F. ACS Catal. 2022, 12, 5806-5826.54. Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Science 2015, 350, 1235-1238; 55. Levin, M. D.; Kaphan, D. M.; Hong, C. M.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. J. Am. Chem. Soc. 2016, 138, 9682-9693.56. Vaissier Welborn, V.; Head-Gordon, T. J. Phys. Chem. Lett. 2018, 9, 3814-3818.57. Li, W.-L.; Hao, H.; Head-Gordon, T. ACS Catal. 2022, 12, 3782-3788.58. Norjmaa, G.; Maréchal, J. D.; Ujaque, G. Chem.Eur. J. 2020, 26, 6988- 6992.59. Norjmaa, G.; Maréchal, J. D.; Ujaque, G. J. Am. Chem. Soc. 2019, 141, 13114-13123.60. Young, T. A.; Martí-Centelles, V.; Wang, J.; Lusby, P. J.; Duarte, F. J. Am. Chem. Soc. 2020, 142, 1300-1310.61. Raynal, M.; Ballester, P.; Vidal-Ferranab, A.; van Leeuwen, P. Chem. Soc. Rev. 2014, 43, 1734-1787.62. Cram, D. Angew. Chem. Int. Ed. 1988, 27, 1009-1020.63. Beer, P.; Gale, P. A.; Smith, D. K. Supramolecular Chemistry. New York: Oxford University Press. 1999.64. Olivo, G.; Capocasa, G.; Del Giudice, D.; Lanzalunga, O.; Di Stefano, S. Chem. Soc. Rev. 2021, 50, 7681-7724. 65. Cramer, C. J. Essentials of Computational Chemistry. John Wiley & Sons: 2002.66. Http://www.Nobelprize.Org/nobel_prizes/chemistry/laureates/2013/. 2013.67. de Broglie, L. Recherches sur la theorie des quanta (researches on the quantum theory). Doctoral Thesis, Pairs 1924.68. Schrodinger, E. Phys. Rev. 1926, 28, 1049.69. Born, M.; Oppenheimer, R. Ann. Phys. 1927, 389, 457-484.70. Thiel, W. Tetrahedron 1988, 44, 7393-7408.71. Dewar, M. J. S. J. Phys. Chem. 1985, 89, 2145-2150. 72. Thiel, W. Adv. Chem. Phys. 1996, 93, 703-757.73. Stewart, J. J. J. Mol. Model. 2007, 13, 1173-1213.74. Bannwarth, C.; Ehlert, S.; Grimme, S. J. Chem. Theory Comput. 2019, 15, 1652-1671.75. Hartree, D. R. Proc. Cambridge Philos. Soc. 1928, 24, 89-110.76. Fock, V. Z. Phys. 1930, 61, 126-148.77. Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.78. Cramer, C. J. Essentials of Computational Chemistry. John Wiley & Sons. 2002.79. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871.80. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.81. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.82. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.83. Becke, A. D. J. Chem. Phys. 1993,98, 1372-1377.84. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.85. Hehre, W. J.; Radom, L.; Schleyer, P. v. R. Ab initio Molecular Orbital Theory;Wiley: New York, 1986.86. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865-3868.87. Adamo, C.; Barone, V. J. Chem. Phys. 1999,110, 6158-6170.88. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.89. Http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/1998.90. Mackerell, A. D. J. Comput. Chem. 2004, 25, 1584-1604. 91. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179-5197. 92. Schuler, L. D.; Daura, X.; van Gunsteren, W. F. J. Comput. Chem. 2001, 22, 1205-1218.93. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187-217.94. Jorgensen, W. L.; Tirado Rives, J. J. Am. Chem. Soc. 1988, 110, 1657-1666.95. Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227-249.96. Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struc. -Theochem 1999, 461-462, 1-21.97. Lengauer, T.; Rarey, M. Curr. Opin. Struct. Biol. 1996, 6, 402-406.98. Kitchen, D.; Decornez, H.; Furr, J.; Bajorath, J. Nat. Rev. Drug. Discov. 2004, 3, 935-949.99. Jorgensen, W. L. Science 1991, 254, 954-9555.100. Feig, M.; Onufriev, A.; Lee, M. S.; Im, W.; Case, D. A.; Brooks, C. L. J. Comput. Chem. 2004, 25, 265-284.101. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 16, 2785-2791.102. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727-748.103. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. J. Med. Chem. 2006, 49, 6177-6196.104. Eyring, H. J. Chem. Phys. 1935, 3, 107-115.105. Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1935, 31, 875.106. Laidler, K. J.; King, M. C. J. Phys. Chem. 1983, 87, 2657-2664.107. Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334-338.108. Pollak, P. I.; Curtin, D. Y. J. Am. Chem. Soc. 1950, 72, 961-965.109. Seeman, J. I. Chem. Rev. 1983, 83, 83-134.110. Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646-10647.111. Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187-10198.112. Arrhenius, S. A. Z. Phys. Chem. 1889, 4, 96-116. 113. Arrhenius, S. A. Z. Phys. Chem. 1889, 4, 226-248. 114. Laidler, K. J. J. Chem. Educ. 1984, 61, 494-498. 115. Laidler, K. J. Chemical Kinetics, Third Edition, Harper & Row, 1987.116. Lewis, W. C. M. J. Chem. Soc., Trans. 1918, 113, 471-492.117. Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771-12800.118. Meany, J. E.; Minderhout, V.; Pocker, Y. J. Chem. Edue. 2001, 78, 204.119. Seeman, J. I. Chem. Rev. 1983, 83, 83-134.120. Gilchrist T. Heterocyclic Chemistry. Harlow: Longman Scientific. 1987. 121. Hosseyni S, Jarrahpour A. Org. Biomol. Chem. 2018, 16, 6840-6852. 122. Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Chem. Rev. 2005, 105, 395-424. 123. Brandt, C.; Braun, S. D.; Stein, C.; Slickers, P.; Ehricht, R.; Pletz, M. W.; Makarewicz, O. Sci. Rep. 2017, 7, 43232. 124. Staudinger H. Justus Liebigs Ann. Chem. 1907, 356, 51-123.125. Tidwell TT. Angew. Chem. Int. Ed. 2008, 47, 1016-1020.126. von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Habich, D. Angew. Chem. Int. Ed. 2006, 45, 5072-5129.127. Burnett, D. A.; Caplen, M. A.; Davis Jr, H. R.; Burrier, R. E.; Clader, J. W. J. Med. Chem. 1994, 37, 1733-1736.128. Rosenblum, S. B.; Huynh, T.; Afonso, A.; Davis Jr, H. R.; Yumibe, N.; Clader, J. W.; Burnett, D. A. J. Med. Chem. 1998, 41, 973-980.129. Clayden, J.; Watson, D. W.; Helliwell, M.; Chambers, M. Chem. Commun.2003, 20, 2582-2583.130. Yoshimura, T.; Takuwa, M.; Tomohara, K.; Uyama, M.; Hayashi, K.; Yang, P.; Hyakutake, R.; Sasamori, T.; Tokitoh, N.; Kawabata, T. Chem. Eur. J. 2012, 18, 15330-15336.131. Martinez-Cuezva, A.; Lopez-Leonardo, C.; Bautista, D.; Alajarin, M.; Berna, J. J. Am. Chem. Soc. 2016, 138, 8726-8729.132. Zhang, X.; Chung, L. W.; Wu, Y.-D. Acc. Chem. Res. 2016, 49, 1302-1310. 133. Ahn, S.; Hong, M.; Sundararajan, M.; Ess, D. H.; Baik, M.-H. Chem. Rev. 2019, 119, 6509-6560. 134. Peng, Q.; Paton, R. S. Acc. Chem. Res. 2016, 49, 1042-1051.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/610136
专题理学院_化学系
推荐引用方式
GB/T 7714
Liang R. COMPUTATIONAL STUDIES ON THE SELECTIVITY AND REACTION MECHANISM OF SUPRAMOLECULAR CATALYSIS[D]. 新加坡. 新加坡国立大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11955015-梁荣-化学系.pdf(8138KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁荣]的文章
百度学术
百度学术中相似的文章
[梁荣]的文章
必应学术
必应学术中相似的文章
[梁荣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。