中文版 | English
题名

A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion

作者
通讯作者Peng Han
发表日期
2023-12-14
DOI
发表期刊
ISSN
1558-0644
卷号PP期号:99页码:1-1
摘要

Rayleigh wave inversion is a reliable method for inverting the S-wave velocities to reflect the stiffness status of the soil and rock masses of the subsurface. The optimization potential of neural networks in the inversion task is gaining recognition among researchers. Regarding neural-network-based Rayleigh wave inversion, a closer functional relationship between the training samples and the unknown function to be modeled indicates improved inversion performance. The traditional sampling method involves randomly generating samples within a predefined search space, which can result in some samples deviating from the actual functional relationship, thus reducing the accuracy and stability of the inversion. However, few studies consider the sample selection issue in the inversion process based on neural networks. This study proposes a sample selection method for selecting more appropriate training samples to overcome the neglect of sample selection, enhancing the functional modeling of neural networks for Rayleigh wave inversion. The implementation of the proposed sample selection method involves two procedures. First, the random samples are generated within a predefined search space to create a pool of samples. Afterward, the mean moving correlation coefficients of the samples inside the pool are calculated to select more suitable samples for network training based on the moving correlation calculation. Numerical simulations and field data applications demonstrate the necessity and effectiveness of the proposed sample selection method for neural-network-based Rayleigh wave inversion. It is concluded that the proposed method effectively enhances the performance of S-wave velocity estimation through Rayleigh wave inversion using neural networks.

关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
ESI学科分类
GEOSCIENCES
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10360176
出版状态
在线出版
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/614027
专题理学院_地球与空间科学系
作者单位
1.School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China.
2.Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology, Southern University of Science and Technology, Shenzhen, 518055, China
3.GGuangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology, Southern University of Science and Technology, Shenzhen, 518055, China
4.Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
通讯作者单位南方科技大学;  地球与空间科学系
推荐引用方式
GB/T 7714
Xiao-Hui Yang,Qiang Zu,Yuanyuan Zhou,et al. A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2023,PP(99):1-1.
APA
Xiao-Hui Yang,Qiang Zu,Yuanyuan Zhou,Peng Han,&Xiaofei Chen.(2023).A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,PP(99),1-1.
MLA
Xiao-Hui Yang,et al."A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING PP.99(2023):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A_Sample_Selection_M(1648KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao-Hui Yang]的文章
[Qiang Zu]的文章
[Yuanyuan Zhou]的文章
百度学术
百度学术中相似的文章
[Xiao-Hui Yang]的文章
[Qiang Zu]的文章
[Yuanyuan Zhou]的文章
必应学术
必应学术中相似的文章
[Xiao-Hui Yang]的文章
[Qiang Zu]的文章
[Yuanyuan Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。