中文版 | English
题名

A systematic methodology for mid-and-long term electric vehicle charging load forecasting: The case study of Shenzhen, China

作者
通讯作者Shao,Ziyun; Jian,Linni
发表日期
2020-05-01
DOI
发表期刊
ISSN
2210-6707
EISSN
2210-6715
卷号56
摘要

More and more adoptions of electric vehicles (EVs) would bring a potential threat on the existing electric grid. In this context, a systematic methodology is presented in this paper to predict the additional loads resulting from EV charging in the mid-and-long term. It includes probabilistic models for describing the EV charging profiles and forecast models for predicting the future EV ownership. It is impractical to develop a method to simulate the charging profiles of the entire EV fleet due to the diversity of EV charging behaviors. As a consequence, the entire EV fleet is divided into four categories viz. private EV, electric taxi, electric bus and official EV so as to predict their charging loads respectively. The proposed method is conducted in the city of Shenzhen, which currently has the largest electric bus and electric taxi fleet in the world. Results indicate that the maximum value of the predicted EV charging profile in 2025 would occur at 21:30, reaching 1,760 MW under high oil price, which could elevate the existing load peak by 11.08 %.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Department of Education of Guangdong Province[2017KQNCX149] ; [ZDSYS201604291912175] ; National Natural Science Foundation of China[61773195]
WOS研究方向
Construction & Building Technology ; Science & Technology - Other Topics ; Energy & Fuels
WOS类目
Construction & Building Technology ; Green & Sustainable Science & Technology ; Energy & Fuels
WOS记录号
WOS:000519788600007
出版者
EI入藏号
20200708165622
EI主题词
Charging (Batteries) ; Electric Automobiles ; Electric Power Plant Loads ; Electric Vehicles ; Fleet Operations ; Forecasting ; Taxicabs ; Vehicle-to-grid
EI分类号
Automobiles:662.1 ; Secondary Batteries:702.1.2 ; Electric Power Systems:706.1
Scopus记录号
2-s2.0-85079232051
来源库
Scopus
引用统计
被引频次[WOS]:102
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/61931
专题工学院_电子与电气工程系
作者单位
1.School of Mechanical and Electrical Engineering,Guangzhou University,Guangzhou,China
2.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Shenzhen Key Laboratory of Electric Direct Drive Technology,Shenzhen,518055,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Zheng,Yanchong,Shao,Ziyun,Zhang,Yumeng,et al. A systematic methodology for mid-and-long term electric vehicle charging load forecasting: The case study of Shenzhen, China[J]. Sustainable Cities and Society,2020,56.
APA
Zheng,Yanchong,Shao,Ziyun,Zhang,Yumeng,&Jian,Linni.(2020).A systematic methodology for mid-and-long term electric vehicle charging load forecasting: The case study of Shenzhen, China.Sustainable Cities and Society,56.
MLA
Zheng,Yanchong,et al."A systematic methodology for mid-and-long term electric vehicle charging load forecasting: The case study of Shenzhen, China".Sustainable Cities and Society 56(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Yanchong]的文章
[Shao,Ziyun]的文章
[Zhang,Yumeng]的文章
百度学术
百度学术中相似的文章
[Zheng,Yanchong]的文章
[Shao,Ziyun]的文章
[Zhang,Yumeng]的文章
必应学术
必应学术中相似的文章
[Zheng,Yanchong]的文章
[Shao,Ziyun]的文章
[Zhang,Yumeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。