中文版 | English
题名

Pollution source identification for river chemical spills by modular-bayesian approach: A retrospective study on the 'Landmark' spill incident in China

作者
通讯作者Jiang,Jiping
发表日期
2019-09-01
DOI
发表期刊
ISSN
2306-5338
EISSN
2306-5338
卷号6期号:3
摘要
It is important to identify source information after a river chemical spill incident occurs. Among various source inversion approaches, a Bayesian-based framework is able to directly characterize inverse uncertainty using a probability distribution and has recently become of interest. However, the literature has not reported its application to actual spill incidents, and many aspects in practical use have not yet been clearly illustrated, e.g., feasibility for large scale pollution incidents, algorithm parameters, and likelihood functions. This work deduced a complete modular-Bayesian approach for river chemical spills, which combined variance assumptions on a pollutant concentration time series with Adaptive-Metropolis sampling. A retrospective case study was conducted based on the 'landmark' spill incident in China, the Songhua River nitrobenzene spill of 2005. The results show that release mass, place, and moment were identified with biases of -26.9%, -7.9%, and 16.9%, respectively. Inverse uncertainty statistics were also quantified for each source parameter. Performance, uncertainty sources, and future work are discussed. This study provides an important real-life case to demonstrate the usefulness of the modular-Bayesian approach in practice and provides valuable references for the setting of parameters for the sampling algorithm and variance assumptions.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Special Funds of Shenzhen Water Science and Technology Development[SZCG2018160615] ; China Postdoctoral Science Foundation[2014M551249] ; National Natural Science Foundation of China[51509061]
WOS研究方向
Water Resources
WOS类目
Water Resources
WOS记录号
WOS:000488111900018
出版者
Scopus记录号
2-s2.0-85077144265
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/61986
专题工学院_环境科学与工程学院
作者单位
1.Shenzhen Municipal Engineering Lab of Environmental IoT Technologies,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Huayue Institute of Ecological Environment Engineering,Chongqing,401122,China
3.School of the Environment,Nanjing University,Nanjing,210093,China
4.School of Environment,Harbin Institute of Technology,Harbin,150090,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Jiang,Jiping,Chen,Yasong,Wang,Baoyu. Pollution source identification for river chemical spills by modular-bayesian approach: A retrospective study on the 'Landmark' spill incident in China[J]. Hydrology,2019,6(3).
APA
Jiang,Jiping,Chen,Yasong,&Wang,Baoyu.(2019).Pollution source identification for river chemical spills by modular-bayesian approach: A retrospective study on the 'Landmark' spill incident in China.Hydrology,6(3).
MLA
Jiang,Jiping,et al."Pollution source identification for river chemical spills by modular-bayesian approach: A retrospective study on the 'Landmark' spill incident in China".Hydrology 6.3(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Jiping]的文章
[Chen,Yasong]的文章
[Wang,Baoyu]的文章
百度学术
百度学术中相似的文章
[Jiang,Jiping]的文章
[Chen,Yasong]的文章
[Wang,Baoyu]的文章
必应学术
必应学术中相似的文章
[Jiang,Jiping]的文章
[Chen,Yasong]的文章
[Wang,Baoyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。