中文版 | English
题名

Task-Oriented Grasp Prediction with Visual-Language Inputs

作者
DOI
发表日期
2023
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
ISBN
978-1-6654-9191-4
会议录名称
页码
4881-4888
会议日期
1-5 Oct. 2023
会议地点
Detroit, MI, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
To perform household tasks, assistive robots receive commands in the form of user language instructions for tool manipulation. The initial stage involves selecting the intended tool (i.e., object grounding) and grasping it in a task-oriented manner (i.e., task grounding). Nevertheless, prior researches on visual-language grasping (VLG) focus on object grounding, while disregarding the fine-grained impact of tasks on object grasping. Task-incompatible grasping of a tool will inevitably limit the success of subsequent manipulation steps. Motivated by this problem, this paper proposes GraspCLIP, which addresses the challenge of task grounding in addition to object grounding to enable task-oriented grasp prediction with visual-language inputs. Evaluation on a custom dataset demonstrates that GraspCLIP achieves superior performance over established baselines with object grounding only. The effectiveness of the proposed method is further validated on an assistive robotic arm for grasping previously unseen kitchen tools given the task specification. Our presentation video is available at: https://www.youtube.com/watch?v=e1wfYQPeAXU.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Shenzhen Key Laboratory of Robotics and Computer Vision[ZDSYS20220330160557001]
WOS研究方向
Computer Science ; Robotics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods ; Robotics
WOS记录号
WOS:001133658803106
EI入藏号
20240315412045
EI主题词
Robotics
EI分类号
Computer Programming Languages:723.1.1 ; Robotics:731.5
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10342268
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/619947
专题工学院_电子与电气工程系
作者单位
1.Shenzhen Key Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, Shenzhen, China
2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
3.Stanford University, United States
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Chao Tang,Dehao Huang,Lingxiao Meng,et al. Task-Oriented Grasp Prediction with Visual-Language Inputs[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:4881-4888.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chao Tang]的文章
[Dehao Huang]的文章
[Lingxiao Meng]的文章
百度学术
百度学术中相似的文章
[Chao Tang]的文章
[Dehao Huang]的文章
[Lingxiao Meng]的文章
必应学术
必应学术中相似的文章
[Chao Tang]的文章
[Dehao Huang]的文章
[Lingxiao Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。