题名 | Task-Oriented Grasp Prediction with Visual-Language Inputs |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
ISBN | 978-1-6654-9191-4
|
会议录名称 | |
页码 | 4881-4888
|
会议日期 | 1-5 Oct. 2023
|
会议地点 | Detroit, MI, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | To perform household tasks, assistive robots receive commands in the form of user language instructions for tool manipulation. The initial stage involves selecting the intended tool (i.e., object grounding) and grasping it in a task-oriented manner (i.e., task grounding). Nevertheless, prior researches on visual-language grasping (VLG) focus on object grounding, while disregarding the fine-grained impact of tasks on object grasping. Task-incompatible grasping of a tool will inevitably limit the success of subsequent manipulation steps. Motivated by this problem, this paper proposes GraspCLIP, which addresses the challenge of task grounding in addition to object grounding to enable task-oriented grasp prediction with visual-language inputs. Evaluation on a custom dataset demonstrates that GraspCLIP achieves superior performance over established baselines with object grounding only. The effectiveness of the proposed method is further validated on an assistive robotic arm for grasping previously unseen kitchen tools given the task specification. Our presentation video is available at: https://www.youtube.com/watch?v=e1wfYQPeAXU. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Shenzhen Key Laboratory of Robotics and Computer Vision[ZDSYS20220330160557001]
|
WOS研究方向 | Computer Science
; Robotics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
; Computer Science, Theory & Methods
; Robotics
|
WOS记录号 | WOS:001133658803106
|
EI入藏号 | 20240315412045
|
EI主题词 | Robotics
|
EI分类号 | Computer Programming Languages:723.1.1
; Robotics:731.5
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10342268 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/619947 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, Shenzhen, China 2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China 3.Stanford University, United States |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chao Tang,Dehao Huang,Lingxiao Meng,et al. Task-Oriented Grasp Prediction with Visual-Language Inputs[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:4881-4888.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论