中文版 | English
题名

ItoV: Efficiently Adapting Deep Learning-Based Image Watermarking to Video Watermarking

作者
通讯作者Xuetao Wei
DOI
发表日期
2023
会议名称
2023 International Conference on Culture-Oriented Science and Technology (CoST)
ISBN
979-8-3503-5800-1
会议录名称
页码
192-197
会议日期
11-14 Oct. 2023
会议地点
Xi’an, China
摘要
Robust watermarking tries to conceal information within a cover imag e/video imperceptibly that is resistant to various distortions. Recently, deep learning-based approaches for image watermarking have made significant advancements in robustness and invisibility. However, few studies focused on video watermarking using deep neural networks due to the high complexity and computational costs. Our paper aims to answer this research question: Can well-designed deep learning-based image watermarking be efficiently adapted to video watermarking? Our answer is positive. First, we revisit the workflow of deep learning-based watermarking methods that leads to a critical insight: temporal information in the video may be essential for general computer vision tasks but not for specific video watermarking. Inspired by this insight, we propose a method named ITOV for efficiently adapting deep learning-based Image watermarking to Video watermarking. Specifically, ITOV merges the temporal dimension of the video with the channel dimension to enable deep neural networks to treat videos as images. We further explore the effects of different convolutional blocks in video watermarking. We find that spatial convolution is the influential primary component in video watermarking, and depthwise convolutions significantly reduce computational costs with negligible impact on performance. In addition, we propose a new frame loss to constrain that the watermark intensity in each video clip frame is consistent, significantly improving the invisibility. Extensive experiments show the superior performance of the adapted video watermarking method compared with the state-of-the-art methods on Kinetics-600 and Inter4K datasets, which demonstrates the efficacy of our method ITOV.
关键词
学校署名
第一 ; 通讯
相关链接[IEEE记录]
收录类别
EI入藏号
20240215337975
EI主题词
Convolution ; Convolutional Neural Networks ; Deep Neural Networks ; Robustness (Control Systems) ; Watermarking
EI分类号
Ergonomics And Human Factors Engineering:461.4 ; Information Theory And Signal Processing:716.1 ; Data Processing And Image Processing:723.2 ; Control Systems:731.1 ; Papermaking Processes:811.1.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10336437
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/619949
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Guanhui Ye,Jiashi Gao,Yuchen Wang,et al. ItoV: Efficiently Adapting Deep Learning-Based Image Watermarking to Video Watermarking[C],2023:192-197.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guanhui Ye]的文章
[Jiashi Gao]的文章
[Yuchen Wang]的文章
百度学术
百度学术中相似的文章
[Guanhui Ye]的文章
[Jiashi Gao]的文章
[Yuchen Wang]的文章
必应学术
必应学术中相似的文章
[Guanhui Ye]的文章
[Jiashi Gao]的文章
[Yuchen Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。