中文版 | English
题名

Deep Boosting Robustness of DNN-Based Image Watermarking via Dbmark

作者
通讯作者Xuetao Wei
DOI
发表日期
2023
会议名称
2023 International Conference on Culture-Oriented Science and Technology (CoST)
ISBN
979-8-3503-5800-1
会议录名称
页码
186-191
会议日期
11-14 Oct. 2023
会议地点
Xi’an, China
摘要
Image watermarking is a technique for hiding information into images that can withstand distortions while requiring the encoded image to be perceptually identical to the original image. Recent work based on deep neural networks (DNN) has achieved impressive progression in digital watermarking. Higher robustness under various distortions is the eternal pursuit of digital image watermarking approaches. In this paper, we propose DB MARK, a novel end-to-end digital image watermarking framework to deep boost the robustness of DNN-based image watermarking. The key novelty is the synergy of invertible neural networks (INN) and effective watermark features generation. The framework generates watermark features with redundancy and error correction ability through the effective neural network based message processor, synergized with the powerful information embedding and extraction abilities of INN to achieve higher robustness and invisibility. The powerful learning ability of neural networks enables the message processor to adapt to various distortions. In addition, we propose to embed the watermark information in the discrete wavelet transform (DWT) domain and design low-low $(LL)$ sub-band loss to enhance invisibility. Extensive experiment results demonstrate the superiority of the proposed framework compared with the state-of-the-art ones under various distortions such as dropout, cropout, crop, Gaussian filter, and JPEG compression.
关键词
学校署名
第一 ; 通讯
相关链接[IEEE记录]
收录类别
EI入藏号
20240215337815
EI主题词
Convolutional Neural Networks ; Deep Neural Networks ; Discrete Wavelet Transforms ; Error Correction ; Image Compression
EI分类号
Ergonomics And Human Factors Engineering:461.4 ; Data Processing And Image Processing:723.2 ; Mathematical Transformations:921.3
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10336500
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/619957
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
3.School of Journalism and Communication, Hunan University, Changsha, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Guanhui Ye,Jiashi Gao,Bo Yin,et al. Deep Boosting Robustness of DNN-Based Image Watermarking via Dbmark[C],2023:186-191.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guanhui Ye]的文章
[Jiashi Gao]的文章
[Bo Yin]的文章
百度学术
百度学术中相似的文章
[Guanhui Ye]的文章
[Jiashi Gao]的文章
[Bo Yin]的文章
必应学术
必应学术中相似的文章
[Guanhui Ye]的文章
[Jiashi Gao]的文章
[Bo Yin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。