中文版 | English
题名

FedVAE: Trajectory privacy preserving based on Federated Variational AutoEncoder

作者
DOI
发表日期
2023
会议名称
98th IEEE Vehicular Technology Conference (VTC-Fall)
ISSN
1090-3038
ISBN
979-8-3503-2929-2
会议录名称
页码
1-7
会议日期
10-13 Oct. 2023
会议地点
Hong Kong, Hong Kong
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The use of trajectory data with abundant spatial-temporal information is pivotal in Intelligent Transport Systems (ITS) and various traffic system tasks. Location-Based Services (LBS) capitalize on this trajectory data to offer users personalized services tailored to their location information. However, this trajectory data contains sensitive information about users' movement patterns and habits, necessitating confidentiality and protection from unknown collectors. To address this challenge, privacy-preserving methods like K-anonymity and Differential Privacy have been proposed to safeguard private information in the dataset. Despite their effectiveness, these methods can impact the original features by introducing perturbations or generating unrealistic trajectory data, leading to suboptimal performance in downstream tasks. To overcome these limitations, we propose a Federated Variational AutoEncoder (FedVAE) approach, which effectively generates a new trajectory dataset while preserving the confidentiality of private information and retaining the structure of the original features. In addition, FedVAE leverages Variational AutoEncoder (VAE) to maintain the original feature space and generate new trajectory data, and incorporates Federated Learning (FL) during the training stage, ensuring that users' data remains locally stored to protect their personal information. The results demonstrate its superior performance compared to other existing methods, affirming FedVAE as a promising solution for enhancing data privacy and utility in location-based applications.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Stable Support Plan Program of Shenzhen Natural Science Fund[20220815111111002]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Engineering, Mechanical
WOS记录号
WOS:001133762500383
EI入藏号
20240115323081
EI主题词
Intelligent systems ; Intelligent vehicle highway systems ; Learning systems ; Location ; Location based services ; Privacy-preserving techniques ; Sensitive data ; Telecommunication services ; Traffic control
EI分类号
Highway Systems:406.1 ; Telecommunication; Radar, Radio and Television:716 ; Telephone Systems and Related Technologies; Line Communications:718 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10333794
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/619958
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, China
2.Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, China
3.Department of Computer Science, University of York, United Kingdom
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yuchen Jiang,Ying Wu,Shiyao Zhang,et al. FedVAE: Trajectory privacy preserving based on Federated Variational AutoEncoder[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuchen Jiang]的文章
[Ying Wu]的文章
[Shiyao Zhang]的文章
百度学术
百度学术中相似的文章
[Yuchen Jiang]的文章
[Ying Wu]的文章
[Shiyao Zhang]的文章
必应学术
必应学术中相似的文章
[Yuchen Jiang]的文章
[Ying Wu]的文章
[Shiyao Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。