中文版 | English
题名

A Large-Scale Clinical Benchmark of ResNet-based Deep Models for Newborn Face Recognition

作者
DOI
发表日期
2023
会议名称
45th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC)
ISSN
2375-7477
EISSN
1558-4615
ISBN
979-8-3503-2448-8
会议录名称
页码
1-4
会议日期
24-27 July 2023
会议地点
Sydney, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Newborn face recognition is a meaningful application for obstetrics in the hospital, as it enhances security measures against infant swapping and abduction through authentication protocols. Due to limited newborn face datasets, this topic was not thoroughly studied. We conducted a clinical trial to create a dataset that collects face images from 200 newborns within an hour after birth, namely NEWBORN200. To our best knowledge, this is the largest newborn face dataset collected in the hospital for this application. The dataset was used to evaluate the four latest ResNet-based deep models for newborn face recognition, including ArcFace, CurricularFace, MagFace, and AdaFace. The experimental results show that AdaFace has the best performance, obtaining 55.24% verification accuracy at 0.1% false accept rate in the open set while achieving 78.76% rank-1 identification accuracy in a closed set. It demonstrates the feasibility of using deep learning for newborn face recognition, also indicating the direction of improvement could be the robustness to varying postures.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key R&D Program of China[2022YFC2407800]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical
WOS记录号
WOS:001133788303229
EI入藏号
20240215361410
EI主题词
Deep learning ; Hospitals
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Hospitals, Equipment and Supplies:462.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10340883
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/619966
专题工学院_生物医学工程系
作者单位
1.Department of Biomedical Engineering, Southern University of Science and Technology, China
2.Department of Obstetrics, Baoan Hospital of Traditional Chinese Medicine in Shenzhen, China
3.The Third People’s Hospital of Shenzhen, China
第一作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Changyi Wu,Dongmin Huang,Lirong Ren,et al. A Large-Scale Clinical Benchmark of ResNet-based Deep Models for Newborn Face Recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-4.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Changyi Wu]的文章
[Dongmin Huang]的文章
[Lirong Ren]的文章
百度学术
百度学术中相似的文章
[Changyi Wu]的文章
[Dongmin Huang]的文章
[Lirong Ren]的文章
必应学术
必应学术中相似的文章
[Changyi Wu]的文章
[Dongmin Huang]的文章
[Lirong Ren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。