中文版 | English
题名

A Scene Adaption Framework for Infant Cry Detection in Obstetrics

作者
DOI
发表日期
2023
会议名称
45th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC)
ISSN
2375-7477
EISSN
1558-4615
ISBN
979-8-3503-2448-8
会议录名称
页码
1-5
会议日期
24-27 July 2023
会议地点
Sydney, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Infant cry provides useful clinical insights for caregivers to make appropriate medical decisions, such as in obstetrics. However, robust infant cry detection in real clinical settings (e.g. obstetrics) is still challenging due to the limited training data in this scenario. In this paper, we propose a scene adaption framework (SAF) including two different learning stages that can quickly adapt the cry detection model to a new environment. The first stage uses the acoustic principle that mixture sources in audio signals are approximately additive to imitate the sounds in clinical settings using public datasets. The second stage utilizes mutual learning to mine the shared characteristics of infant cry between the clinical setting and public dataset to adapt the scene in an unsupervised manner. The clinical trial was conducted in Obstetrics, where the crying audios from 200 infants were collected. The experimented four classifiers used for infant cry detection have nearly 30% improvement on the F1-score by using SAF, which achieves similar performance as the supervised learning based on the target setting. SAF is demonstrated to be an effective plugand-play tool for improving infant cry detection in new clinical settings. Our code is available at https://github.com/contactlesshealthcare/Scene-Adaption-for-Infant-Cry-Detection.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key R&D Program of China[2022YFC2407800]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical
WOS记录号
WOS:001133788303042
EI入藏号
20240215361636
EI主题词
Audio acoustics ; Learning systems
EI分类号
Medicine and Pharmacology:461.6 ; Acoustic Waves:751.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10340693
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/619975
专题工学院_生物医学工程系
作者单位
1.Department of Biomedical Engineering, Southern University of Science and Technology, China
2.Department of Obstetrics, Baoan Hospital of Traditional Chinese Medicine in Shenzhen, China
3.The Third People’s Hospital of Shenzhen, China
第一作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Dongmin Huang,Lirong Ren,Hongzhou Lu,et al. A Scene Adaption Framework for Infant Cry Detection in Obstetrics[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dongmin Huang]的文章
[Lirong Ren]的文章
[Hongzhou Lu]的文章
百度学术
百度学术中相似的文章
[Dongmin Huang]的文章
[Lirong Ren]的文章
[Hongzhou Lu]的文章
必应学术
必应学术中相似的文章
[Dongmin Huang]的文章
[Lirong Ren]的文章
[Hongzhou Lu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。