中文版 | English
题名

Identification of physical processes and unknown parameters of 3D groundwater contaminant problems via theory-guided U-net

作者
通讯作者Zhang, Dongxiao
发表日期
2023-11-01
DOI
发表期刊
ISSN
1436-3240
EISSN
1436-3259
摘要
Identification of unknown physical processes and parameters of groundwater contaminant problems is a challenging task due to their ill-posed and non-unique nature. Numerous works have focused on determining nonlinear physical processes through model selection methods. However, identifying corresponding nonlinear systems for different physical phenomena using numerical methods can be computationally prohibitive. With the advent of machine learning (ML) algorithms, more efficient surrogate models based on neural networks (NNs) have been developed in various disciplines. In this work, a theory-guided U-net (TgU-net) framework is proposed for surrogate modeling of three-dimensional (3D) groundwater contaminant problems in order to efficiently elucidate their involved processes and unknown parameters. In TgU-net, the underlying governing equations are embedded into the loss function of U-net as soft constraints. Herein, sorption is considered to be a potential process of an uncertain type, and three equilibrium sorption isotherm types (i.e., linear, Freundlich, and Langmuir) are considered. Different from traditional approaches in which one model corresponds to one equation (Schoeniger et al. in Water Resour Res 50(12):9484-9513, 2014; Cao et al. in Hydrogeol J 27(8):2907-2918, 2019), these three sorption types are modeled through only one TgU-net surrogate. Accurate predictions illustrate the satisfactory generalizability and extrapolability of the constructed TgU-net. Furthermore, based on the constructed TgU-net surrogate, a data assimilation method is employed to identify the physical process and parameters simultaneously. The convergence of indicators demonstrates the validity of the proposed method. The influence of sparsity-promoting techniques, data noise, and quantity of observation information is also explored. Results demonstrate the feasibility of neural network learning a cluster of equations that have similar behaviors. This work shows the possibility of governing equation discovery of physical problems that contain multiple and even uncertain processes by using deep learning and data assimilation methods.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
This work is partially funded by the National Natural Science Foundation of China (Grant No. 52288101), the Shenzhen Key Laboratory of Natural Gas Hydrates (Grant No. ZDSYS20200421111201738), and the SUSTech-Qingdao New Energy Technology Research Institute[52288101] ; National Natural Science Foundation of China[ZDSYS20200421111201738]
WOS研究方向
Engineering ; Environmental Sciences & Ecology ; Mathematics ; Water Resources
WOS类目
Engineering, Environmental ; Engineering, Civil ; Environmental Sciences ; Statistics & Probability ; Water Resources
WOS记录号
WOS:001103786000002
出版者
EI入藏号
20234715077513
EI主题词
Deep learning ; Groundwater ; Groundwater pollution ; Learning systems ; Numerical methods ; Parameter estimation
EI分类号
Groundwater:444.2 ; Water Pollution Sources:453.1 ; Ergonomics and Human Factors Engineering:461.4 ; Chemical Operations:802.3 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/629007
专题工学院_环境科学与工程学院
作者单位
1.Peking Univ, Coll Engn, Beijing 100871, Peoples R China
2.China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China
3.Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Peoples R China
4.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
He, Tianhao,Chang, Haibin,Zhang, Dongxiao. Identification of physical processes and unknown parameters of 3D groundwater contaminant problems via theory-guided U-net[J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,2023.
APA
He, Tianhao,Chang, Haibin,&Zhang, Dongxiao.(2023).Identification of physical processes and unknown parameters of 3D groundwater contaminant problems via theory-guided U-net.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT.
MLA
He, Tianhao,et al."Identification of physical processes and unknown parameters of 3D groundwater contaminant problems via theory-guided U-net".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT (2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Tianhao]的文章
[Chang, Haibin]的文章
[Zhang, Dongxiao]的文章
百度学术
百度学术中相似的文章
[He, Tianhao]的文章
[Chang, Haibin]的文章
[Zhang, Dongxiao]的文章
必应学术
必应学术中相似的文章
[He, Tianhao]的文章
[Chang, Haibin]的文章
[Zhang, Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。