题名 | Multiparty distance minimization: Problems and an evolutionary approach |
作者 | |
通讯作者 | Luo,Wenjian |
发表日期 | 2023-12-01
|
DOI | |
发表期刊 | |
ISSN | 2210-6502
|
卷号 | 83 |
摘要 | Multiparty multiobjective optimization problems (MPMOPs) have been proposed to represent situations in which involves multiple decision makers, each decision maker concerns on a multiobjective optimization problem (MOP) and their MOPs are different. To study multiparty multiobjective evolutionary algorithms in depth, this paper constructs a series of MPMOPs based on distance minimization problems (DMPs). These MPMOPs, called MPDMPs, can easily represent the solutions in the decision space. Thus, the behaviors of evolutionary algorithms performing on MPDMPs can be conveniently studied including the movement of the solutions and the distribution of the final solutions. To address MPDMPs, the new proposed algorithm OptMPNDS3 uses a multiparty initialization method to initialize the population and the JADE2 operator to generate the offspring. OptMPNDS3 is compared with OptAll, OptMPNDS and OptMPNDS2 on the problem suite. The results show that the performance of OptMPNDS3 is strong and comparable to that of other algorithms. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
WOS记录号 | WOS:001111495100001
|
EI入藏号 | 20234615058660
|
EI主题词 | Decision making
; Evolutionary algorithms
|
EI分类号 | Management:912.2
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85176347578
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/629010 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies,School of Computer Science and Technology,Harbin Institute of Technology,Shenzhen,Guangdong,518055,China 2.Peng Cheng Laboratory,Shenzhen,Guangdong,518055,China 3.School of Artificial Intelligence/School of Future Technology,Nanjing University of Information Science and Technology,Nanjing,210044,China 4.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China |
推荐引用方式 GB/T 7714 |
She,Zeneng,Luo,Wenjian,Lin,Xin,et al. Multiparty distance minimization: Problems and an evolutionary approach[J]. Swarm and Evolutionary Computation,2023,83.
|
APA |
She,Zeneng,Luo,Wenjian,Lin,Xin,Chang,Yatong,&Shi,Yuhui.(2023).Multiparty distance minimization: Problems and an evolutionary approach.Swarm and Evolutionary Computation,83.
|
MLA |
She,Zeneng,et al."Multiparty distance minimization: Problems and an evolutionary approach".Swarm and Evolutionary Computation 83(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论