中文版 | English
题名

Multi-objective decomposition evolutionary algorithm with objective modification-based dominance and external archive

作者
通讯作者Wang,Zhenkun
发表日期
2023-12-01
DOI
发表期刊
ISSN
1568-4946
卷号149
摘要
In practice, the multi-objective optimization problem (MOP) is typically challenging in two aspects. On the one hand, its Pareto front has imbalanced search difficulties; on the other hand, its search space contains many dominance resistant solutions (DRSs). Decomposing a complicated MOP into several simple MOPs for collaborative optimization (M2M) has been acknowledged to be efficient in coping with the imbalanced search difficulty. Nevertheless, the convergence efficiency of the M2M-based multi-objective evolutionary algorithm (MOEA) is rarely investigated, especially on the MOP with DRSs. This paper reveals two convergence challenges faced by M2M-based MOEAs. Subsequently, a variant called MOEA/D-OMDEA is proposed to achieve better convergence efficiency without sacrificing advantages in diversity preservation. MOEA/D-OMDEA integrates a new relaxed dominance criterion, namely the OM-dominance criterion, into its environmental selection to alleviate the negative influence of inferior solutions (e.g., DRSs) as well as to better balance convergence and diversity. MOEA/D-OMDEA is compared with ten state-of-the-art MOEAs on two sets of MOP benchmarks with different characteristics and a real-world problem. Experimental results indicate that MOEA/D-OMDEA can significantly outperform the other ten competitors on these problems. In addition, this paper provides a thorough analysis of the effectiveness of each new algorithmic component and the sensitivity of each newly-introduced parameter.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:001111746400001
EI入藏号
20234615059592
EI主题词
Decomposition ; Efficiency ; Multiobjective optimization
EI分类号
Chemical Reactions:802.2 ; Production Engineering:913.1 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85176499141
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/629030
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Department of Computer Science,City University of Hong Kong,Hong Kong
4.City University of Hong Kong Shenzhen Research Institute,China
第一作者单位系统设计与智能制造学院;  计算机科学与工程系
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Wang,Zhenkun,Li,Qingyan,Li,Genghui,et al. Multi-objective decomposition evolutionary algorithm with objective modification-based dominance and external archive[J]. Applied Soft Computing,2023,149.
APA
Wang,Zhenkun,Li,Qingyan,Li,Genghui,&Zhang,Qingfu.(2023).Multi-objective decomposition evolutionary algorithm with objective modification-based dominance and external archive.Applied Soft Computing,149.
MLA
Wang,Zhenkun,et al."Multi-objective decomposition evolutionary algorithm with objective modification-based dominance and external archive".Applied Soft Computing 149(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zhenkun]的文章
[Li,Qingyan]的文章
[Li,Genghui]的文章
百度学术
百度学术中相似的文章
[Wang,Zhenkun]的文章
[Li,Qingyan]的文章
[Li,Genghui]的文章
必应学术
必应学术中相似的文章
[Wang,Zhenkun]的文章
[Li,Qingyan]的文章
[Li,Genghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。