中文版 | English
题名

Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study

作者
通讯作者Gong, Jingshan
发表日期
2023-10-26
DOI
发表期刊
ISSN
2234-943X
卷号13
摘要
IntroductionLymphovascular space invasion (LVSI) is associated with lymph node metastasis and poor prognosis in cervical cancer. In this study, we investigated the potential of radiomics, derived from magnetic resonance (MR) images using habitat analysis, as a non-invasive surrogate biomarker for predicting LVSI in cervical cancer.MethodsThis retrospective study included 300 patients with cervical cancer who underwent surgical treatment at two centres (centre 1 = 198 and centre 2 = 102). Using the k-means clustering method, contrast-enhanced T1-weighted imaging (CE-T1WI) images were segmented based on voxel and entropy values, creating sub-regions within the volume ofinterest. Radiomics features were extracted from these sub-regions. Pearson correlation coefficient and least absolute shrinkage and selection operator LASSO) regression methods were used to select features associated with LVSI in cervical cancer. Support vector machine (SVM) model was developed based on the radiomics features extracted from each sub-region in the training cohort.ResultsThe voxels and entropy values of the CE-T1WI images were clustered into three sub-regions. In the training cohort, the AUCs of the SVM models based on radiomics features derived from the whole tumour, habitat 1, habitat 2, and habitat 3 models were 0.805 (95% confidence interval [CI]: 0.745-0.864), 0.873(95% CI: 0.824-0.922), 0.869 (95% CI: 0.821-0.917), and 0.870 (95% CI: 0.821-0.920), respectively. Compared with whole tumour model, the predictive performances of habitat 3 model was the highest in the external test cohort (0.780 [95% CI: 0.692-0.869]).ConclusionsThe radiomics model based on the tumour sub-regional habitat demonstrated superior predictive performance for an LVSI in cervical cancer than that of radiomics model derived from the whole tumour.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Oncology
WOS类目
Oncology
WOS记录号
WOS:001099239900001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/629218
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Clin Med Coll 2, Shenzhen, Peoples R China
2.Guangzhou Women & Childrens Med Ctr, Dept Radiol, Guangzhou, Peoples R China
3.Southern Univ Sci & Technol, Clin Med Coll Jinan Univ 2, Shenzhen Peoples Hosp, Dept Radiol,Affiliated Hosp 1, Shenzhen, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Wang, Shuxing,Liu, Xiaowen,Wu, Yu,et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study[J]. FRONTIERS IN ONCOLOGY,2023,13.
APA
Wang, Shuxing.,Liu, Xiaowen.,Wu, Yu.,Jiang, Changsi.,Luo, Yan.,...&Gong, Jingshan.(2023).Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study.FRONTIERS IN ONCOLOGY,13.
MLA
Wang, Shuxing,et al."Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study".FRONTIERS IN ONCOLOGY 13(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Shuxing]的文章
[Liu, Xiaowen]的文章
[Wu, Yu]的文章
百度学术
百度学术中相似的文章
[Wang, Shuxing]的文章
[Liu, Xiaowen]的文章
[Wu, Yu]的文章
必应学术
必应学术中相似的文章
[Wang, Shuxing]的文章
[Liu, Xiaowen]的文章
[Wu, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。