中文版 | English
题名

Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data

作者
通讯作者Hu,Qing
发表日期
2024-03-01
DOI
发表期刊
ISSN
2095-2201
EISSN
2095-221X
卷号18期号:3
摘要
Efficiently predicting effluent quality through data-driven analysis presents a significant advancement for consistent wastewater treatment operations. In this study, we aimed to develop an integrated method for predicting effluent COD and NH levels. We employed a 200 L pilot-scale sequencing batch reactor (SBR) to gather multimodal data from urban sewage over 40 d. Then we collected data on critical parameters like COD, DO, pH, NH, EC, ORP, SS, and water temperature, alongside wastewater surface images, resulting in a data set of approximately 40246 points. Then we proposed a brain-inspired image and temporal fusion model integrated with a CNN-LSTM network (BITF-CL) using this data. This innovative model synergized sewage imagery with water quality data, enhancing prediction accuracy. As a result, the BITF-CL model reduced prediction error by over 23% compared to traditional methods and still performed comparably to conventional techniques even without using DO and SS sensor data. Consequently, this research presents a cost-effective and precise prediction system for sewage treatment, demonstrating the potential of brain-inspired models.[Figure not available: see fulltext.].
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
Scopus记录号
2-s2.0-85179180638
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/629268
专题工学院_环境科学与工程学院
作者单位
1.School of Environment,Harbin Institute of Technology,Harbin,150090,China
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Engineering Innovation Center of SUSTech (Beijing),Southern University of Science and Technology,Beijing,100083,China
4.Faculty of Environment and Life,Beijing University of Technology,Beijing,100124,China
5.Engineering Research Center of Intelligence Perception and Autonomous Control,Ministry of Education,Beijing,100124,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  南方科技大学
推荐引用方式
GB/T 7714
Li,Junchen,Lin,Sijie,Zhang,Liang,et al. Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data[J]. Frontiers of Environmental Science and Engineering,2024,18(3).
APA
Li,Junchen,Lin,Sijie,Zhang,Liang,Liu,Yuheng,Peng,Yongzhen,&Hu,Qing.(2024).Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data.Frontiers of Environmental Science and Engineering,18(3).
MLA
Li,Junchen,et al."Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data".Frontiers of Environmental Science and Engineering 18.3(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Junchen]的文章
[Lin,Sijie]的文章
[Zhang,Liang]的文章
百度学术
百度学术中相似的文章
[Li,Junchen]的文章
[Lin,Sijie]的文章
[Zhang,Liang]的文章
必应学术
必应学术中相似的文章
[Li,Junchen]的文章
[Lin,Sijie]的文章
[Zhang,Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。