中文版 | English
题名

Towards explaining graph neural networks via preserving prediction ranking and structural dependency

作者
通讯作者Liu,Qun
发表日期
2024-03-01
DOI
发表期刊
ISSN
0306-4573
卷号61期号:2
摘要

Graph Neural Networks (GNNs) have demonstrated their efficacy in representing graph-structured data, but their lack of explainability hinders their applicability to critical tasks. Existing GNNs explainers fail to consider the prediction ranking consistency between the original graph and the explanation, which is critical for preserving the fidelity of the explainer. Moreover, the structural dependency in the graph, reflecting the distinctive learning schema of the model, is ignored in current GNN explainers. To this end, we propose the NeuralSort based Plackett-Luce model to guide the parameter learning of the explainer via a differentiable ranking loss to ensure the explainer's fidelity to the GNNs. Additionally, a graph transformation schema explicitly modeling the edge dependency is proposed for constructing the mask generator. By integrating the aforementioned strategies, we propose a novel framework for explaining GNNs in a faithful manner. Through comprehensive experiments both for node classification and graph classification on BA-Shapes, BA-Community, Graph-Twitter, and Graph-SST5 datasets, the proposed framework achieves 149.67%, 51.43%, 40.747%, and 28.87% improvements compared with the state-of-the-art explainers in terms of fidelity to the GNNs. Data and code are available at https://github.com/ymzhang0103/RDPExplainer.

关键词
相关链接[Scopus记录]
收录类别
SCI ; SSCI ; EI
语种
英语
学校署名
其他
ESI学科分类
SOCIAL SCIENCES, GENERAL
Scopus记录号
2-s2.0-85178016053
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/629275
专题理学院_统计与数据科学系
作者单位
1.Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications,Chongqing,400065,China
2.Hong Kong Baptist University,Hong Kong,999077,Hong Kong
3.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,518000,China
推荐引用方式
GB/T 7714
Zhang,Youmin,Cheung,William K.,Liu,Qun,et al. Towards explaining graph neural networks via preserving prediction ranking and structural dependency[J]. Information Processing and Management,2024,61(2).
APA
Zhang,Youmin,Cheung,William K.,Liu,Qun,Wang,Guoyin,Yang,Lili,&Liu,Li.(2024).Towards explaining graph neural networks via preserving prediction ranking and structural dependency.Information Processing and Management,61(2).
MLA
Zhang,Youmin,et al."Towards explaining graph neural networks via preserving prediction ranking and structural dependency".Information Processing and Management 61.2(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Towards explaining g(3042KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Youmin]的文章
[Cheung,William K.]的文章
[Liu,Qun]的文章
百度学术
百度学术中相似的文章
[Zhang,Youmin]的文章
[Cheung,William K.]的文章
[Liu,Qun]的文章
必应学术
必应学术中相似的文章
[Zhang,Youmin]的文章
[Cheung,William K.]的文章
[Liu,Qun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。