中文版 | English
题名

Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics

作者
通讯作者Wu,Kailiang
发表日期
2024-02-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号498
摘要
The relativistic hydrodynamics (RHD) equations have three crucial intrinsic physical constraints on the primitive variables: positivity of pressure and density, and subluminal fluid velocity. However, numerical simulations can violate these constraints, leading to nonphysical results or even simulation failure. Designing genuinely physical-constraint-preserving (PCP) schemes is very difficult, as the primitive variables cannot be explicitly reformulated using conservative variables due to relativistic effects. In this paper, we propose three efficient Newton–Raphson (NR) methods for robustly recovering primitive variables from conservative variables. Importantly, we rigorously prove that these NR methods are always convergent and PCP, meaning they preserve the physical constraints throughout the NR iterations. The discovery of these robust NR methods and their PCP convergence analyses are highly nontrivial and technical. Our NR methods are versatile and can be seamlessly incorporated into any RHD schemes that require the recovery of primitive variables. As an application, we apply them to design PCP finite volume Hermite weighted essentially non-oscillatory (HWENO) schemes for solving the RHD equations. Our PCP HWENO schemes incorporate high-order HWENO reconstruction, a PCP limiter, and strong-stability-preserving time discretization. We rigorously prove the PCP property of the fully discrete schemes using convex decomposition techniques. Moreover, we suggest the characteristic decomposition with rescaled eigenvectors and scale-invariant nonlinear weights to enhance the performance of the HWENO schemes in simulating large-scale RHD problems. Several demanding numerical tests are conducted to demonstrate the robustness, accuracy, and high resolution of the proposed PCP HWENO schemes and to validate the efficiency of our NR methods.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85178101654
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/629298
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.School of Mathematical Sciences,Xiamen University,Xiamen,Fujian,361005,China
2.School of Mathematical Sciences,Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen,Fujian,361005,China
3.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,National Center for Applied Mathematics Shenzhen (NCAMS),Shenzhen,518055,China
通讯作者单位数学系;  深圳国家应用数学中心;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Cai,Chaoyi,Qiu,Jianxian,Wu,Kailiang. Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics[J]. Journal of Computational Physics,2024,498.
APA
Cai,Chaoyi,Qiu,Jianxian,&Wu,Kailiang.(2024).Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics.Journal of Computational Physics,498.
MLA
Cai,Chaoyi,et al."Provably convergent Newton–Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics".Journal of Computational Physics 498(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Chaoyi]的文章
[Qiu,Jianxian]的文章
[Wu,Kailiang]的文章
百度学术
百度学术中相似的文章
[Cai,Chaoyi]的文章
[Qiu,Jianxian]的文章
[Wu,Kailiang]的文章
必应学术
必应学术中相似的文章
[Cai,Chaoyi]的文章
[Qiu,Jianxian]的文章
[Wu,Kailiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。