中文版 | English
题名

A Deep Reinforcement Learning-based Decentralized Hierarchical Motion Control Strategy for Multiple Amphibious Spherical Robot Systems with Tilting Thrusters

作者
通讯作者Shuxiang,Guo
发表日期
2023-11-23
DOI
发表期刊
ISSN
1530-437X
卷号24期号:1页码:1-1
摘要

The variable operating conditions and hostile environments faced by underwater robots remains a challenge for motion control in unknown environments. In order to improve the capability of the amphibious spherical robot (ASR) in the unknown environments, a decentralized hierarchical deep reinforcement learning (DRL) motion control method based on deep deterministic policy gradient (DDPG) for multiple amphibious spherical robots system is proposed. In the low-level, a DDPG-based motion controller is trained under a compound rewarding to learn to set the configurations of the tilting angle and rotational speed of each thruster at a proper timescale. In the high-level, a planning controller consisting of different action networks is designed to generate a reasonable thrust target to guide the movement of the robot. Specifically, inspired by the artificial potential field method, the complex underwater motion can be decomposed into several simple virtual forces. Each action network is trained to learn to generate a virtual thrust target component for a specific action. By combining the outputs of several action networks, the distributed cooperative motion control for multi-robot systems can then be easily achieved. Finally, the motion control strategy is applied to the physical multi-ASR system, and the experiment results have shown satisfactory performance.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
出版者
ESI学科分类
ENGINEERING
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328477
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/633287
专题工学院_电子与电气工程系
作者单位
1.Beijing Institute of Technology, Beijing 100081, China
2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
3.School of Life Science and the Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
He,Yin,Shuxiang,Guo,Ao,Li,et al. A Deep Reinforcement Learning-based Decentralized Hierarchical Motion Control Strategy for Multiple Amphibious Spherical Robot Systems with Tilting Thrusters[J]. IEEE Sensors Journal,2023,24(1):1-1.
APA
He,Yin,Shuxiang,Guo,Ao,Li,Liwei,Shi,&Meng,Liu.(2023).A Deep Reinforcement Learning-based Decentralized Hierarchical Motion Control Strategy for Multiple Amphibious Spherical Robot Systems with Tilting Thrusters.IEEE Sensors Journal,24(1),1-1.
MLA
He,Yin,et al."A Deep Reinforcement Learning-based Decentralized Hierarchical Motion Control Strategy for Multiple Amphibious Spherical Robot Systems with Tilting Thrusters".IEEE Sensors Journal 24.1(2023):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1.pdf(4049KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Yin]的文章
[Shuxiang,Guo]的文章
[Ao,Li]的文章
百度学术
百度学术中相似的文章
[He,Yin]的文章
[Shuxiang,Guo]的文章
[Ao,Li]的文章
必应学术
必应学术中相似的文章
[He,Yin]的文章
[Shuxiang,Guo]的文章
[Ao,Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。