[1] 刘元希.世界上最早的工具制造者[J].世界科学, 2004, (12): 1.
[2] HENSHILWOOD C S, D'ERRICO F, MAREAN C W, et al. An early bone tool industry from the Middle Stone Age at Blombos Cave, South Africa: implications for the origins of modern human behaviour, symbolism and language[J]. Journal of Human Evolution, 2001, 41(6): 631-678.
[3] GLEBA M, MANNERING U. Textiles and textile production in Europe from prehistory to AD 400[M]. Oxbow Books, 2012.
[4] GILES M. Making metal and forging relations: ironworking in the British Iron Age[J]. Oxford Journal of Archaeology, 2007, 26(4): 395-413.
[5] FANG F. Atomic and close-to-atomic scale manufacturing—a trend in manufacturing development[J]. Frontiers of Mechanical Engineering, 2016, 11(4): 325-327.
[6] POUNDS N J G. The Culture of the English People: Iron Age to the Industrial Revolution[M]. Cambridge University Press, 1994.
[7] DE VRIES J. The industrial revolution and the industrious revolution[J]. The Journal of Economic History, 1994, 54(2): 249-270.
[8] 房丰洲,张效栋.纳米切削基础理论及相关关键技术研究[J].中国科学基金, 2014,28(05):357-359.
[9] 房丰洲.“工业4.0”不能照搬“制造3.0”:“中国制造”升级的战略选择[J]. 人民论坛, 2015, (16): 59-61.
[10] GAO J, LUO X, FANG F, et al. Fundamentals of atomic and close-to-atomic scale manufacturing: A review[J]. International Journal of Extreme Manufacturing, 2021, 4(1): 012001.
[11] 戴一帆,彭小强.光刻物镜光学零件制造关键技术概述[J].机械工程学报, 2013, 49(17): 10-18.
[12] 彭祎帆,袁波,曹向群.光刻机技术现状及发展趋势[J].光学仪器, 2010, (4): 80-85.
[13] ULRICH W, ROSTALSKI H J, HUDYMA R M. Development of dioptric projection lenses for deep ultraviolet lithography at Carl Zeiss[J]. Journal of Micro/Nanolithography, MEMS and MOEMS, 2004, 3(1): 87-96.
[14] ROTHSCHILD M, BLOOMSTEIN T M, CURTIN J E, et al. 157 nm: Deepest deep-ultraviolet yet[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999, 17(6): 3262-3266.
[15] STOELDRAIJER J, OCKWELL D, WAGNER C. EUVL into production–Update on ASML’s NXE platform[C]//2009 EUVL Symposium, Prague. 2009.
[16] HUDYMA R M, SOMMARGREN G E, SWEENEY D W, et al. Fabrication and testing of optics for EUV projection lithography[R]. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1998.
[17] 姚汉民,胡松,邢廷文.光学投影曝光微纳加工技术[M]. 北京工业大学出版社, 2006.
[18] KNEER B, GRAUPNER P, GARREIS R, et al. Catadioptric lens design: the breakthrough to hyper-NA optics[C]//Optical Microlithography XIX. SPIE, 2006, 6154: 692-701.
[19] PARHAM T G, STOLZ C J, BAISDEN T, et al. Developing optics finishing technologies for the National Ignition Facility[J]. ICF Quarterly Report, 1999, 9(2).
[20] LAWSON J K, AIKENS D M, ENGLISH JR R E, et al. Surface figure and roughness tolerances for NIF optics and the interpretation of the gradient, PV wavefront, and RMS specifications[C]//Optical Manufacturing and Testing III. SPIE, 1999, 3782: 510-517.
[21] CAMPBELL J H, HAWLEY R A, STOLZ C J, et al. NIF optical materials and fabrication technologies: an overview[J]. Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, 2004, 5341: 84-101.
[22] MOSES E I. The National Ignition Facility (NIF): A path to fusion energy[J]. Energy Conversion and Management, 2008, 49(7): 1795-1802.
[23] PAETH M L, MANES K R, KALANTAR D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145.
[24] STOLZ C J. Status of NIF mirror technologies for completion of the NIF facility[C]//Advances in Optical Thin Films III. SPIE, 2008, 7101: 420-430.
[25] HUANG Y, LIU J. Analysis on kill mechanism and characteristics of high energy laser weapon[J]. Optics, 2004: 20-23.
[26] REN G. Current situation and development trend of high energy laser weapon [J]. Laser and Optoelectronics Progress, 2008, 45: 61-69.
[27] Liu Y. Research on Laser Weapon Soft Damage to IR Seeker[J]. Journal of Computers, 2011, 6(6): 1238-1245.
[28] SHE H, TAN S. Development and application prospects of high-energy laser weapon [J]. Hongwai Yu Jiguang Gongcheng, Infrared and Laser Engineering, 2002, 31(3): 267-271.
[29] HARRY G M, COLLABORATION F L S. Advanced LIGO: the next generation of gravitational wave detectors[J]. Classical and Quantum Gravity, 2010, 27(8): 084006.
[30] ABBOTT B, ABBOTT R, ADHIKARI R, et al. LIGO: the laser interferometer gravitational-wave observatory[J]. Reports on Progress in Physics, 2009, 72(7): 076901.
[31] GLENZER S, MACGOWAN B, MICHEL P, et al. Symmetric inertial confinement fusion implosions at ultra-high laser energies[J]. Science, 2010, 327(5970): 1228-1231.
[32] STOLZ C J. The national ignition facility: The world's largest optical system[C]//Optical Design and Testing III. SPIE, 2007, 6834: 21-29.
[33] BESNARD D. The megajoule laser program—ignition at hand[J]. The European Physical Journal D, 2007, 44(2): 207-213.
[34] 朱健强,陈绍和,郑玉霞,等.神光Ⅱ激光装置研制[J].中国激光,2019,46(01):15-22.
[35] 王美聪,陈刚,黄湛,等.神光Ⅲ主机装置编组站稳定性设计[J].光学精密工程, 2011,19(11):2664-2670.
[36] 赵东峰,华能,李朝东,等.“神光 Ⅱ”装置多功能高能激光系统靶场终端光学组件的研制[J]. 中国光学学会, 2006年学术大会论文摘要集, 2006.
[37] 周旭升.大中型非球面计算机控制研抛工艺方法研究[D].长沙:国防科学技术大学, 2007.
[38] 袁巨龙,张飞虎,戴一帆,等.超精密加工领域科学技术发展研究[J].机械工程学报, 2010, (15): 161-177.
[39] SERHATLIOGLU M, ORTAC B, ELBUKEN C, et al. CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving[J]. Journal of Micromechanics and Microengineering, 2016, 26(11): 115011.
[40] RUGGIERO A, IANNITTI G, TESTA G, et al. High strain rate fracture behaviour of fused silica[C]//Journal of Physics: Conference Series. IOP Publishing, 2014, 500(18): 182036.
[41] KOZLOWSKI M R, CARR J, HUTCHEON I D, et al. Depth profiling of polishing-induced contamination on fused silica surfaces[C]//Laser-Induced Damage in Optical Materials: 1997. SPIE, 1998, 3244: 365-375.
[42] CAMP D W, KOZLOWSKI M R, SHEEHAN L M, et al. Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces[C]//Laser-Induced Damage in Optical Materials: 1997. SPIE, 1998, 3244: 356-364.
[43] JNOES R A, RUPP W J. Rapid optical fabrication with CCOS[C]//Advanced Optical Manufacturing and Testing. SPIE, 1990, 1333: 34-43.
[44] FANG F, VENKATESH V. Diamond cutting of silicon with nanometric finish[J]. CIRP Annals, 1998, 47(1): 45-49.
[45] FANG F, XU F. Recent advances in micro/nano-cutting: effect of tool edge and material properties[J]. Nanomanufacturing and Metrology, 2018, 1(1): 4-31.
[46] Kumar P, Mishra M K, Singh S K. International Journal of Mechanical Engineering and Technology (IJMET)[J]. Journal Impact Factor, 2013, 4(3): 85-93.
[47] BRINKSMEIER E, MUTLUGüNES Y, KLOCKE F, et al. Ultra-precision grinding[J]. CIRP Annals, 2010, 59(2): 652-671.
[48] ZHU P, FANG F. Study of the minimum depth of material removal in nanoscale mechanical machining of single crystalline copper[J]. Computational Materials Science, 2016, 118: 192-202.
[49] RUPP V. The development of optical surfaces during the grinding process[J]. Applied Optics, 1965, 4(6): 743-748.
[50] JONES R A. Computer-controlled optical surfacing with orbital tool motion[J]. Optical Engineering, 1986, 25(6): 785-790.
[51] AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials[J]. Current Applied Physics, 2012, 12: S41-S6.
[52] WLKER D D, BROOKS D, FREEMAN R, et al. First aspheric form and texture results from a production machine embodying the precession process[C]//Optical Manufacturing and Testing IV. SPIE, 2001, 4451: 267-276.
[53] BINGHAM R G, WALKER D D, KIM D H, et al. Novel automated process for aspheric surfaces[C]//Current Developments in Lens Design and Optical Systems Engineering. SPIE, 2000, 4093: 445-450.
[54] FAHNLE O W, VAN BRUG H, FRANKENA H J. Fluid jet polishing of optical surfaces[J]. Applied optics, 1998, 37(28): 6771-6773.
[55] KUMAR M, KUMAR A, ALOK A, et al. Magnetorheological method applied to optics polishing: A review[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 804(1): 012012.
[56] ANGEL J R P, DAVISON W B, HILL J M, et al. Progress toward making lightweight 8-m mirrors of short focal length[C]//Advanced Technology Optical Telescopes IV. SPIE, 1990, 1236: 636-640.
[57] LIN B, LI K L, CAO Z C, et al. Modeling of pad surface topography and material removal characteristics for computer-controlled optical surfacing process[J]. Journal of Materials Processing Technology, 2019, 265: 210-218.
[58] 雷红,雒建斌,张朝辉.化学机械抛光技术的研究进展[J].上海大学学报: 自然科学版, 2003, 9(6): 494-502.
[59] 雷红,雒建斌,马俊杰.化学机械抛光 (CMP) 技术的发展, 应用及存在问题[J]. 润滑与密封, 2002, (4): 73-76.
[60] MARTIN H M, ANDERSEN D S, ANGEL J R P, et al. Progress in the stressed-lap polishing of a 1.8-mf/1 mirror[C]//Advanced Technology Optical Telescopes IV. SPIE, 1990, 1236: 682-690.
[61] MARTIN H M, CALLAHAN S P, CUERDEN B, et al. Active supports and force optimization for the MMT primary mirror[C]//Advanced Technology Optical/IR Telescopes VI. SPIE, 1998, 3352: 412-423.
[62] MARTIN H M, ALLEN R, BURGE J H, et al. Polishing of a 6.5-mf/1.25 mirror for the first Magellan telescope[C]//Optical Fabrication and Testing. SPIE, 1999, 3739: 47-55.
[63] ZHAO H, LI X, FAN B, et al. Experimental dynamic deformation analysis of active stressed lap[J]. Applied Optics, 2016, 55(6): 1190-1197.
[64] ZHAO H, LI X, FAN B, et al. Deformation verification and surface improvement of active stressed lap for 4 m-class primary mirror fabrication[J]. Applied Optics, 2015, 54(10): 2658-2664.
[65] LUO X, ZHENG L, ZHANG X. Finite element analysis simulation and experimental verification of the stressed lap’s deformation accuracy[J]. Applied Optics, 2011, 50(5): 782-787.
[66] XIAO X L, LI G X, MEI HJ, et al. Polishing of silicon nitride ceramic balls by clustered magnetorheological finish[J]. Micromachines, 2020, 11(3): 304.
[67] OZA A D, KUMAR A, BADHEKA V. Improving quartz micro-machining performance by magnetohydrodynamic and zinc-coated assisted traveling wire-electrochemical discharge machining process[J]. Materials Today: Proceedings, 2020, 28: 970-976.
[68] 张银东.机器人辅助模具气囊抛光运动控制和轨迹规划研究[D].浙江:浙江工业大学, 2009.
[69] 高波,谢大纲,姚英学,等.气囊式工具抛光新技术[J]. 光学技术, 2004, 30(3): 333-336.
[70] GRAY C, BAKER I, DAVIES G, et al. Fast manufacturing of E-ELT mirror segments using CNC polishing[C]//Optical Manufacturing and Testing. SPIE, 2013, 8838: 146-157.
[71] WALKER D, BEAUCAMP A, DUNN C, et al. Active control of edges and global microstructure on segmented mirrors[C]//Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. SPIE, 2008, 7018: 352-360.
[72] KORDONSKI W, SEKERES A. Jet-induced finishing of a substrate surface: U.S. Patent 6,719,611[P]. 2004-4-13.
[73] 方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究[J].光学技术, 2004, 30(2): 248-250.
[74] 张学成,戴一帆,李圣怡,等.磁射流抛光技术研究[J]. 机械设计与制造, 2007, (12): 114-116.
[75] LIAO W, DAI Y, XIE X, et al. Influence of local densification on microscopic morphology evolution during ion-beam sputtering of fused-silica surfaces[J]. Applied Optics, 2014, 53(11): 2487-2493.
[76] MENAPACE J A, PENETRANTE B, MILLER P E, et al. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics[C]//Optical Fabrication and Testing. Optica Publishing Group, 2002: OMB4.
[77] CHEN M, DING W, CHENGJ, et al. Recent advances in laser-induced surface damage of KH2PO4 crystal[J]. Applied Sciences, 2020, 10(19): 6642.
[78] EIGLER D M, SCHWEIZER E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 1990, 344(6266): 524-526.
[79] SUGIMOTO Y, POU P, CUSTANCE O, et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy[J]. Science, 2008, 322(5900): 413-417.
[80] PENNYCOOK S, VARELA M, CHISHOLM M, et al. Scanning transmission electron microscopy of nanostructures[J]. The Oxford Handbook of Nanoscience and Nanotechnology, 2010: 205-248.
[81] OURA K, LIFSHITS V, SARANIN A, et al. Surface science: an introduction[M]. Springer Science & Business Media, 2013.
[82] BUDAU P, GRIGORESCU M. Atom transfer in the STM double-well potential during a voltage pulse[J]. Physical Review B, 1998, 57(11): 6313.
[83] BRYANT A, SMITH D, QUATE C. Imaging in real time with the tunneling microscope[J]. Applied Physics Letters, 1986, 48(13): 832-834.
[84] MEYER E, HUG H J, BENNEWITZ R. Scanning probe microscopy[M]. Springer, 2003.
[85] HLA S W. Atom-by-atom assembly[J]. Reports on Progress in Physics, 2014, 77(5): 056502.
[86] RASHIDI M, WOLKOW R A. Autonomous scanning probe microscopy in situ tip conditioning through machine learning[J]. ACS Nano, 2018, 12(6): 5185-5189.
[87] GUO D, XIE G, LUO J. Mechanical properties of nanoparticles: basics and applications[J]. Journal of Physics D: Applied Physics, 2013, 47(1): 013001.
[88] HIRTH S, OSTENDORF F, REICHLING M. Lateral manipulation of atomic size defects on the CaF2 (111) surface[J]. Nanotechnology, 2006, 17(7): S148.
[89] SUSI T, MEYER J C, KOTAKOSKI J. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation[J]. Ultramicroscopy, 2017, 180: 163-172.
[90] SUSI T, KOTAKOSKI J, KEPAPTSOGLOU D, et al. Silicon–carbon bond inversions driven by 60-keV electrons in graphene[J]. Physical Review Letters, 2014, 113(11): 115501.
[91] DYCK O, KIM S, JIMENEZ I E, et al. Building structures atom by atom via electron beam manipulation[J]. Small, 2018, 14(38): 1801771.
[92] DENG T, LI J, ZHENG Z. Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation[J]. International Journal of Machine Tools and Manufacture, 2020, 148: 103472.
[93] TEMMLER A, KUPPER M, WALOCHNIK M, et al. Surface structuring by laser remelting of metals[J]. Journal of Laser Applications, 2017, 29(1): 012015.
[94] TEMPLE P A, LOWDERMILK W H, MILAM D. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm[J]. Applied Optics, 1982, 21(18): 3249-3255.
[95] MCLACHLAN A D, MEYER F P. Temperature dependence of the extinction coefficient of fused silica for CO 2 laser wavelengths[J]. Applied Optics, 1987, 26(9): 1728-1731.
[96] VAREL H, ASHKENASI D, ROSENFELD A, et al. Micromachining of quartz with ultrashort laser pulses[J]. Applied Physics A Materials Science & Processing, 1997, 65(4-5): 367-373.
[97] WANG J, NIINO H, YABE A. One-step microfabrication of fused silica by laser ablation of an organic solution[J]. Applied Physics A: Materials Science & Processing, 1999, 68(1).
[98] CHAN J W, HUSER T, RISBUD S, et al. Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Optics letters, 2001, 26(21): 1726-1728.
[99] GORELIK T, WILL M, NOLTE S, et al. Transmission electron microscopy studies of femtosecond laser induced modifications in quartz[J]. Applied Physics A, 2003, 76(3): 309-311.
[100] HNATOVSKY C, TAYLOR R, RAJEEV P, et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica[J]. Applied Physics Letters, 2005, 87(1): 014104.
[101] NOWAK K M, BAKER H J, HALL D R. Efficient laser polishing of silica micro-optic components [J]. Applied Optics, 2006, 45(1): 162-171.
[102] HEIDRICH S, RICHMANN A, SCHMITZ P, et al. Optics manufacturing by laser radiation[J]. Optics and Lasers in Engineering, 2014, 59: 34-40.
[103] WEINGARTEN C, SCHMICKLER A, WILLENBORG E, et al. Laser polishing and laser shape correction of optical glass[J]. Journal of Laser Applications, 2017, 29(1): 011702.
[104] JUNG S, LEE P A, KIM B H. Surface polishing of quartz-based microfluidic channels using CO2 laser[J]. Microfluidics and Nanofluidics, 2016, 20(6): 84.
[105] SERHATLIOGLU M, ORTAC B, ELBUKEN C, et al. CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving [J]. Journal of Micromechanics & Microengineering, 2016, 26(11): 115011.
[106] RICHTER B, BLANKE N, WERNER C, et al. Effect of initial surface features on laser polishing of Co-Cr-Mo alloy made by powder-bed fusion[J]. The Journal of The Minerals, Metals & Materials Society, 2019, 71(3): 912-919.
[107] NUSSER C, SANDKER H, WILLENBORG E. Pulsed laser micro polishing of metals using dual-beam technology[J]. Physics Procedia, 2013, 41: 346-355.
[108] BHADURI D, PENCHEV P, BATAL A, et al. Laser polishing of 3D printed mesoscale components[J]. Applied Surface Science, 2017, 405: 29-46.
[109] PFEFFERKORN F E, DUFFIE N A, MORROW J D, et al. Effect of beam diameter on pulsed laser polishing of S7 tool steel[J]. CIRP Annals, 2014, 63(1): 237-240.
[110] ZHOU Y, ZHAO Z, ZHANG W, et al. Experiment study of rapid laser polishing of freeform steel surface by dual-beam[J]. Coatings, 2019, 9(5): 324.
[111] UKAR E, LAMIKIZ A, DE LACALLE L L, et al. Laser polishing of tool steel with CO2 laser and high-power diode laser[J]. International Journal of Machine Tools and Manufacture, 2010, 50(1): 115-125.
[112] RAMOS G J, BOURELL D. Reducing surface roughness of metallic freeform fabricated parts using non-tactile finishing methods[J]. International Journal of Materials and Product Technology, 2004, 21(4): 297-316.
[113] MAI T, LIM G. Micromelting and its effects on surface topography and properties in laser polishing of stainless steel[J]. Journal of Laser Applications, 2004, 16(4): 221-228.
[114] KANG D, ZOU P, WU H, et al. Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel[J]. Journal of Manufacturing Processes, 2021, 62: 403-417.
[115] TEMMLER A, LIU D, LUO J, et al. Influence of pulse duration and pulse frequency on micro-roughness for laser micro polishing (LµP) of stainless steel AISI 410[J]. Applied Surface Science, 2020, 510: 145272.
[116] TEMMLER A, ROSS I, LUO J, et al. Influence of global and local process gas shielding on surface topography in laser micro polishing (LμP) of stainless steel 410[J]. Surface and Coatings Technology, 2020, 403: 126401.
[117] OBEIDI M A, MCCARTHY E, O’CONNELL B, et al. Laser polishing of additive manufactured 316L stainless steel synthesized by selective laser melting[J]. Materials, 2019, 12(6): 991.
[118] CHEN L, RICHTER B, ZHANG X, et al. Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion[J]. Materials Science and Engineering: A, 2021, 802: 140579.
[119] HAFIZ A M K, BORDATCHEV E V, TUTUNEA-FATAN R O. Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel[J]. Journal of Manufacturing Processes, 2012, 14(4): 425-434.
[120] DAI W, LI J, ZHANG W, et al. Evaluation of fluences and surface characteristics in laser polishing SKD 11 tool steel[J]. Journal of Materials Processing Technology, 2019, 273: 116241.
[121] XIAO H, ZHOU Y, LIU M, et al. Laser polishing of tool steel using a continuous-wave laser assisted by a steady magnetic field[J]. AIP Advances, 2020, 10(2): 025319.
[122] TEMMLER A, LIU D, PREUßNER J, et al. Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11[J]. Materials & Design, 2020, 192: 108689.
[123] PFEFFERKORN F E, DUFFIE N A, LI X, et al. Improving surface finish in pulsed laser micro polishing using thermocapillary flow[J]. CIRP Annals, 2013, 62(1): 203-206.
[124] SCHMIDT J, SCHOLZ R, RIEGEL H. Laser polishing of aluminum by remelting with high energy pulses: Laserpolieren von Aluminium durch Umschmelzen mit Hochenergieimpulsen[J]. Materialwissenschaft Und Werkstofftechnik, 2015, 46(7): 686-691.
[125] BURZIC B, HOFELE M, MüRDTER S, et al. Laser polishing of ground aluminum surfaces with high energy continuous wave laser[J]. Journal of Laser Applications, 2017, 29(1): 011701.
[126] FEIT M, RUBENCHIK A M. Mechanisms of CO2 laser mitigation of laser damage growth in fused silica[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 4932.
[127] MENDEZ E, BAKER H J, NOWAK K M, et al. Highly localized CO2 laser cleaning and damage repair of silica optical surfaces[J]. Proceedings of Spie the International Society for Optical Engineering, 2005, 5647.
[128] CORMONT P, BOURGEADE A, CAVARO S, et al. Relevance of Carbon Dioxide Laser to Remove Scratches on Large Fused Silica Polished Optics[J]. Advanced Engineering Materials, 2015, 17(3): 253-259.
[129] PROSKUROVSKY D, ROTSHTEIN V, OZUR G. Use of low-energy, high-current electron beams for surface treatment of materials[J]. Surface and Coatings Technology, 1997, 96(1): 117-122.
[130] PROSKUROVSKY D, ROTSHTEIN V, OZUR G, et al. Pulsed electron-beam technology for surface modification of metallic materials[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 16(4): 2480-2488.
[131] OKADA A, UNO Y, YABUSHITA N, et al. High efficient surface finishing of bio-titanium alloy by large-area electron beam irradiation[J]. Journal of Materials Processing Technology, 2004, 149(1-3): 506-511.
[132] OKADA A, UNO Y, MCGEOUGH J, et al. Surface finishing of stainless steels for orthopedic surgical tools by large-area electron beam irradiation[J]. CIRP Annals, 2008, 57(1): 223-236.
[133] OKADA A, KITADA R, OKAMOTO Y, et al. Surface modification of cemented carbide by EB polishing[J]. CIRP Annals, 2011, 60(1): 575-578.
[134] FARAYIBI P, ABIOYE T, MURRAY J, et al. Surface improvement of laser clad Ti–6Al–4V using plain waterjet and pulsed electron beam irradiation[J]. Journal of Materials Processing Technology, 2015, 218: 1-11.
[135] WALKER J, MURRAY J, NIE M, et al. The effect of large-area pulsed electron beam melting on the corrosion and microstructure of a Ti6Al4V alloy[J]. Applied Surface Science, 2014, 311: 534-540.
[136] KIM J, KIM J-S, KANG E-G, et al. Surface modification of the metal plates using continuous electron beam process (CEBP)[J]. Applied Surface Science, 2014, 311: 201-207.
[137] OKADA A, OKAMOTO Y, UNO Y, et al. Improvement of surface characteristics for long life of metal molds by large-area EB irradiatio [J]. Journal of Materials Processing Tech, 2014, 214(8): 1740-1748.
[138] QIN Y, DONG C, SONG Z, et al. Deep modification of materials by thermal stress wave generated by irradiation of high-current pulsed electron beams[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2009, 27(3): 430-435.
[139] HU J J, ZHANG G B, XU H B, et al. Study progress of material surface modification with large scale pulse electron beam[J]. Applied Mechanics and Materials, 2012, 117: 1147-1151.
[140] OKADA A, OKAMOTO Y, UNO Y, et al. Improvement of surface characteristics for long life of metal molds by large-area EB irradiation[J]. Journal of Materials Processing Technology, 2014, 214(8): 1740-1748.
[141] YU Z, WANG Z, YAMAZAKI K, et al. Surface finishing of die and tool steels via plasma-based electron beam irradiation[J]. Journal of Materials Processing Technology, 2006, 180(1-3): 246-252.
[142] TOKUNAGA J, KOJIMA T, KINUTA S, et al. Large-area electron beam irradiation for surface polishing of cast titanium[J]. Dental Materials Journal, 2009, 28(5): 571-577.
[143] JUNG J-H, PARK H-K, LEE B S, et al. Study on surface shape control of pure Ti fabricated by electron beam melting using electrolytic polishing[J]. Surface and Coatings Technology, 2017, 324: 106-110.
[144] UNO Y, OKADA A, UEMURA K, et al. A new polishing method of metal mold with large-area electron beam irradiation[J]. Journal of Materials processing technology, 2007, 187: 77-80.
[145] ROSA B, MOGNOL P, HASCOëT J-Y. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 2015, 27(S2): S29102.
[146] UNO Y, OKADA A, UEMURA K, et al. High-efficiency finishing process for metal mold by large-area electron beam irradiation[J]. Precision Engineering, 2005, 29(4): 449-455.
[147] ROTSHTEIN V, PROSKUROVSKY D, OZUR G, et al. Surface modification and alloying of metallic materials with low-energy high-current electron beams[J]. Surface and Coatings Technology, 2004, 180: 377-381.
[148] MURRAY J W, CLARE A T. Repair of EDM induced surface cracks by pulsed electron beam irradiation[J]. Journal of Materials Processing Technology, 2012, 212(12): 2642-2651.
[149] FARAYIBI P K, ABIOYE T E, MURRAY J W, et al. Surface improvement of laser clad Ti–6Al–4V using plain waterjet and pulsed electron beam irradiation[J]. Journal of Materials Processing Technology, 2015, 218(218): 1-11.
[150] ZHAO L, CHENG J, CHEN M, et al. Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing [J]. International Journal of Extreme Manufacturing, 2019, 1(3): 035001.
[151] SUN Q, LEE T, BERESNA M, et al. Control of laser induced cumulative stress for efficient processing of fused silica[J]. Scientific Reports, 2020, 10(1): 1-8.
[152] ZHOU H, ZHOU H, ZHAO Z, et al. Numerical Simulation and Verification of Laser-Polishing Free Surface of S136D Die Steel[J]. Metals, 2021, 11(3): 400.
[153] MA C, GUAN Y, ZHOU W. Laser polishing of additive manufactured Ti alloys [J]. Optics and Lasers in Engineering, 2017, 93: 171-177.
[154] DU F, LI C, MI Z, et al. Anti-wear property of aluminum–silicon alloy treated by chemical etching, mechanical honing and laser finishing[J]. Materials, 2019, 12(8): 1273.
[155] XU Z, OUYANG W, JIA S, et al. Cracks Repairing by Using Laser Additive and Subtractive Hybrid Manufacturing Technology[J]. Journal of Manufacturing Science and Engineering, 2020, 142(3): 1-13.
[156] SUN G F, SHEN X T, WANG Z D, et al. Laser metal deposition as repair technology for 316L stainless steel: Influence of feeding powder compositions on microstructure and mechanical properties[J]. Optics & Laser Technology, 2019, 109: 71-83.
[157] SHANG D, REN C, LIU H, et al. Approach to recovery of fatigue damage for copper film by pulsed laser irradiation[J]. Surface Engineering, 2013, 29(7): 536-542.
[158] YAN J, KOBAYASHI F. Laser recovery of machining damage under curved silicon surface[J]. CIRP Annals, 2013, 62(1): 199-202.
[159] YAN J, ASAMI T, KURIYAGAWA T. Response of machining-damaged single-crystalline silicon wafers to nanosecond pulsed laser irradiation[J]. Semicond Sci Technol, 2007, 22(4): 392.
[160] YAN J, SAKAI S, ISOGAI H, et al. Recovery of microstructure and surface topography of grinding-damaged silicon wafers by nanosecond-pulsed laser irradiation[J]. Semicondscitechnol, 2009, 24(10): 105018.
[161] KEIICHIRO N, YU T, TAKETOSHI K, et al. Characterization of recrystallized depth and dopant distribution in laser recovery of grinding damage in single-crystal silicon[J]. Materials ence in Semiconductor Processing, 2018, 82: 54-61.
[162] NIITSU K, TAYAMA Y, KATO T, et al. Laser recovery of grinding-induced subsurface damage in the edge and notch of a single-crystal silicon wafer[J]. Surface Topography: Metrology and Properties, 2019, 7(1): 015013.
[163] LU J, WEI D, WANG R, et al. Surface polishing and modification of 3Cr2Mo mold steel by electron beam irradiation[J]. Vacuum, 2017, 143: 283-287.
[164] ZHANG R-X, XI X-C, HU J, et al. Influence of process parameters on temperature field during electron beam surface polishing[J]. Procedia Cirp, 2018, 68: 200-205.
[165] BO G, HAO S, ZOU J, et al. Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy[J]. Surface & Coatings Technology, 2007, 201(14): 6297-6303.
[166] ZOU J X, GROSDIDIER T, ZHANG K M, et al. Microstructures and phase formations in the surface layer of an AISI D2 steel treated with pulsed electron beam[J]. Journal of Alloys & Compounds, 2007, 434: 707-709.
[167] J. X, ZOU, AND, et al. Mechanisms of hardening, wear and corrosion improvement of 316 L stainless steel by low energy high current pulsed electron beam surface treatment[J]. Thin Solid Films, 2010, 519(4): 1404-1415.
[168] DENG T, LI J, ZhENG Z, et al. Influence of plasma beam polishing process parameters on surface roughness of AISI 304 stainless steel[J]. Applied Surface Science, 2022, 585: 152741.
[169]戴伟,郑志镇,李建军,等. HT25灰铸铁的微等离子弧表面改性[J]. 金属热处理, 2016, 000(002): 170-175.
[170] DENG T, LI J, ZHENG Z. Micro-beam plasma polishing of ground alloy steel surfaces[J]. Procedia Manufacturing, 2018, 15: 1678-1686.
[171] DENG T, ZHENG Z, et al. Surface polishing of AISI 304 stainless steel with micro plasma beam irradiation[J]. Applied Surface Science, 2019, 476: 796-805.
[172] DENG T, XIE F, LI J, et al. Effect of overlapped adjacent tracks on surface morphology in plasma beam polishing of austenitic stainless steel[J]. Applied Surface Science, 2020, 512: 145739.
[173] DAI W, LI J, ZHENG Z, et al. Surface finishing by atmospheric pressure micro plasma beam irradiation[J]. Materials and Manufacturing Processes, 2016, 31(9): 1216-1222
[174] OKADA A, OKAMOTO Y, CLARE A, et al. Fundamental study on releasability of molded rubber from mold tool surface[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(5): 1515-1521.
[175] MOURITS F M, RUMMENS F H. A critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methods[J]. Canadian Journal of Chemistry, 1977, 55(16): 3007-3020.
[176] LAUTRUP B. Exotic and Everyday Phenomena in the Macroscopic World[J]. Physics of Continuous Matter, 2005.
[177] MARCHAND A, WEIJS J H, SNOEIJER J H, et al. Why is surface tension a force parallel to the interface?[J]. American Journal of Physics, 2011, 79(10): 999-1008.
[178] NGUYEN A, SCHULZE H J. Colloidal science of flotation[M]. CRC Press, 2003.
[179] CHEN Y, YI A Y, YAO D, et al. Thermal Reflow Process for Glass Microlens Manufacturing[C]//International Manufacturing Science and Engineering Conference. 2008, 48524: 417-421.
[180] SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. npj Computational Materials, 2016, 2(1): 1-14.
[181] FRANTZDALE B, PLIMPTON S J, SHEPHARD M S. Software components for parallel multiscale simulation: an example with LAMMPS[J]. Engineering with Computers, 2010, 26(2): 205-211.
[182] STUKOWSKI, ALEXANDER. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling Simulmaterscieng, 2010, 18(1): 2154-2162.
[183] TERSOFF J. New empirical model for the structural properties of silicon[J]. Physical Review Letters, 1986, 56(6): 632.
[184] DODSON, BRIAN. Development of a many-body Tersoff-type potential for silicon[J]. Physical Review B Condensed Matter, 1987, 35(6): 2795.
[185] OKADA A, UNO Y, IIO A, et al. New surface modification method of bio-titanium alloy by EB polishing[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2008, 2(4): 694-700.
[186] CHKHALO N I, CHURIN S A, MIKHAYLENKO M S, et al. Ion-beam polishing of fused silica substrates for imaging soft x-ray and extreme ultraviolet optics[J]. Applied Optics, 2016, 55(6): 1249-1256.
[187] GROBE A, SCHMATZ J, LITTKE R, et al. Enhanced surface flatness of vitrinite particles by broad ion beam polishing and implications for reflectance measurements[J]. International Journal of Coal Geology, 2017, 180: 113-121.
[188] COUAIRON A, SUDRIE L, FRANCO M, et al. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Physical Review B, 2005, 71(12): 125435.
[189] STUART B, FEIT M, RUBENCHIK A, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1995, 74(12): 2248.
[190] LI Y, YUAN Z, WANG J, et al. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes [J]. Optics & Laser Technology, 2017, 91: 149-158.
[191] GUENTHER K, HUMPHERYS T, BALMER J, et al. 1.06-μm laser damage of thin film optical coatings: a round-robin experiment involving various pulse lengths and beam diameters[J]. Applied Optics, 1984, 23(21): 3743-3752.
[192] LAMBROPOULOS J C, XU S, FANG T, et al. Twyman effect mechanics in grinding and microgrinding[J]. Applied Optics, 1996, 35(28): 5704-5713.
[193] BUIJS M, KORPEL-VAN HOUTEN K. Three-body abrasion of brittle materials as studied by lapping[J]. Wear, 1993, 166(2): 237-245.
[194] HED P P, EDWARDS D F, DAVIS J B. Subsurface damage in optical materials: origin, measurement and removal[C]//Optical Fabrication and Testing. Optica Publishing Group, 1988: WC1.
[195] 袁巨龙,王志伟,文东辉,等.超精密加工现状综述[J].机械工程学报, 2007, 43(1): 35-48.
[196] WANG Z, WU Y, DAI Y, et al. Subsurface damage distribution in the lapping process[J]. Applied Optics, 2008, 47(10): 1417-1426.
[197] CHENG H, FENG Z, WANG Y. Surface roughness and material-removal rate with magnetorheological finishing without subsurface damage of the surface[J]. Journal of Optical Technology, 2005, 72(11): 865-871.
[198] Burnham A K, Hackel L A, Wegner P J, et al. Improving 351-nm damage performance of large-aperture fused silica and DKDP optics[C]//Laser-Induced Damage in Optical Materials: 2001. SPIE, 2002, 4679: 173-185.
[199] BATTERSBY C L, SHEEHAN L M, KOZLOWSKI M R. Effects of wet etch processing on laser-induced damage of fused silica surfaces[C]//Laser-Induced Damage in Optical Materials: 1998. SPIE, 1999, 3578: 446-455.
[200] BOUCHUT P, GARREC P, PELLE C. Wet etching for the mitigation of laser damage growth in fused silica[C]//Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization. SPIE, 2003, 4932: 103-111.
[201] WONG L, SURATWALA T, FEIT M, et al. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica [J]. Journal of Non-Crystalline Solids, 2009, 355(13): 797-810.
[202] PROKOPOWICZ-PRIGOGINE M. Reactivity of a silica network of glass: molecular mechanism of the dissolution of a silica network in aqueous HF-HCl solutions [J]. Glastechnische Berichte, 1989, 62(7): 249-255.
[203] BORN H H, PRIGOGINE M. The rate equation for the dissolution of silica in hydrochloric-hydrofluoric acid mixtures [J]. Journal de Chimie Physique, 1979, 76: 538-544.
[204] JUDGE J S. A study of the dissolution of SiO2 in acidic fluoride solutions [J]. Journal of the Electrochemical Society, 1971, 118(11): 1772.
[205] PROKSCHE H, NAGORSEN G, ROSS D. The Influence of NH 4 F on the Etch Rates of Undoped SiO2 in Buffered Oxide Etch [J]. Journal of the Electrochemical Society, 1992, 139(2): 521.
[206] CHENG J, WANG J, HOU J, et al. Effect of polishing-induced subsurface impurity defects on laser damage resistance of fused silica optics and their removal with HF acid etching[J]. Applied Sciences, 2017, 7(8): 838.
[207] LI R, ZHANG Y, ZHANG Y, et al. Plasma-based isotropic etching polishing of synthetic quartz[J]. Journal of Manufacturing Processes, 2020, 60: 447-456.
[208] YI R, ZHANG Y, ZHANG X, et al. A generic approach of polishing metals via isotropic electrochemical etching[J]. International Journal of Machine Tools and Manufacture, 2020, 150: 103517.
[209] ICHIKI T, TAURA R, HORIIKE Y. Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets[J]. Journal of Applied Physics, 2004, 95(1): 35-39.
[210] WU B, ZHANG Y, YI R, et al. Tuning the Plasma Etching Mode for the Atomic-Scale Smoothing of Single-Crystal Silicon[J]. The Journal of Physical Chemistry Letters, 2022, 13(36): 8580-8585.
[211] ZHANG Y, LI R, ZHANG Y, et al. Indiscriminate revelation of dislocations in single crystal SiC by inductively coupled plasma etching[J]. Journal of the European Ceramic Society, 2019, 39(9): 2831-2838.
[212] MOGAB C, ADAMS A, FLAMM D. Plasma etching of Si and SiO2—The effect of oxygen additions to CF4 plasma[J]. Journal of Applied Physics, 1978, 49(7): 3796-3803.
[213] WANG R, ZHANG C, LIU X, et al. Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure[J]. Applied Surface Science, 2015, 328: 509-515.
[214] JUNG T, KIM D, LIM H. Molecular emission of CF4 gas in low-pressure inductively coupled plasma[J]. Bulletin of the Korean Chemical Society, 2006, 27(3): 373-375.
[215] SANO Y, WATANABE M, KATO T, et al. Temperature dependence of plasma chemical vaporization machining of silicon and silicon carbide[C]//Materials Science Forum. Trans Tech Publications Ltd, 2009, 600: 847-850.
[216] ZIMMERMANN S, AHNER N, BLASCHTA F, et al. Analysis of the impact of different additives during etch processes of dense and porous low-k with OES and QMS[J]. Microelectronic Engineering, 2010, 87(3): 337-342.
[217] LUO Q, LU J, XU X, et al. Removal mechanism of sapphire substrates (0001, 112¯ 0 and 101¯ 0) in mechanical planarization machining[J]. Ceramics International, 2017, 43(18): 16178-16184.
[218] WU Z, LI G, JIA Y, et al. Investigation on morphology and chemistry of the Beilby layer on polished fused silica[J]. Ceramics International, 2023, 49(11): 17116-17122.
[219] DOUTI D-B, GALLAIS L, COMMANDRé M. Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses[J]. Optical Engineering, 2014, 53(12): 122509-122509.
[220] LAWSON J K, WOLFE C R, MANES K R, et al. Specification of optical components using the power spectral density function[C]//Optical Manufacturing and Testing. SPIE, 1995, 2536: 38-50.
[221] DEBARRE D, BOOTH M J, WILSON T. Image based adaptive optics through optimisation of low spatial frequencies[J]. Optics Express, 2007, 15(13): 8176-8190.
[222] YOUNGWORTH R N, STONE B D. Simple estimates for the effects of mid-spatial-frequency surface errors on image quality[J]. Applied Optics, 2000, 39(13): 2198-2209.
[223] DENG Y, HOU X, LI B, et al. Review on mid-spatial frequency error suppression in optical components manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2023: 1-21.
[224] HUDYMA R, SOMMARGREN G E, SWEENEY D W, et al. Fabrication and testing of optics for EUV projection lithography[R]: Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1998.
[225] ENDO H, INABA T, PAHLOVY S A, et al. Low energy Xe+ ion beam machining of ULE substrates for EUVL projection optics–Evaluation of high-spatial frequency roughness[J]. Microelectronic Engineering, 2010, 87(5-8): 982-984.
[226] DAI Y, LIAO W, ZHOU L, et al. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm[J]. Applied Optica, 2010, 49(34): 6630-6636.
[227] DRUEDING T W, BIFANO T G, FAWCETT S C. Contouring algorithm for ion figuring[J]. Precision Engineering, 1995, 17(1): 10-21.
[228] XU M, DAI Y, XIE X, et al. Structure optimization and fabricating capability analysis of an ion-beam machine for a subnanometer optical surface[J]. Applied Optics, 2015, 54(27): 8055-8061.
[229] ZEUNER M, KIONTKE S. Ion beam figuring technology in optics manufacturing: An established alternative for commercial applications[J]. Optik & Photonik, 2012, 7(2): 56-58.
[230] FRANZ T, HäNSEL T. Ion beam figuring (IBF) solutions for the correction of surface errors of small high performance optics[C]//Optical Fabrication and Testing. Optica Publishing Group, 2008: OThC7.
[231] XU M, SHI F, ZHOU L, et al. Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica[J]. Optics Express, 2017, 25(23): 29260-29271.
[232] LIAO W, DAI Y, XIE X, et al. Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components [J]. Applied Optics, 2013, 52(16): 3719-3725.
[233] XU M, DAI Y, ZHOU L, et al. Evolution mechanism of surface roughness during ion beam sputtering of fused silica[J]. Applied Optics, 2018, 57(20): 5566-5573.
[234] WANG Y, DAI Y, HU H, et al. Study on rapid convergence strategy of nano-precision optical surface by ion beam figuring[J]. Optics Communications, 2022, 507: 127614.
[235] WEISER M. Ion beam figuring for lithography optics[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(8-9): 1390-1393.
[236] CHKHALO N, CHURIN S, PESTOV A, et al. Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics[J]. Optics express, 2014, 22(17): 20094-20106.
[237] LIANG S, ZHANG L, DENG H. Theoretical and experimental study on plasma-induced atom-migration manufacturing (PAMM) of glass[J]. Applied Surface Science, 2022, 599: 153976.
[238] WU J F, LU Z W, ZHANG H X, et al. Dwell time algorithm in ion beam figuring [J]. Applied Optics, 2009, 48(20): 3930-3937.
[239] CHEN G, XIE X, ZHOU L. Removal function and stability study of RF ion source for optics figuring[J]. Aviation Precision Manufacturing Technology Papers52,(5), 2016: 19-22.
[240] GABURRO Z, PUCKER G, BELLUTTI P, et al. Electroluminescence in MOS structures with Si/SiO2 nanometric multilayers[J]. Solid State Communications, 2000, 114(1): 33-37.
[241] ZHENG T, LI Z. The present status of Si/SiO2 superlattice research into optoelectronic applications[J]. Superlattices and Microstructures, 2005, 37(4): 227-247.
[242] LOH T H, WANG Q, NG K T, et al. CMOS compatible integration of Si/SiO2 multilayer GRIN lens optical mode size converter to Si wire waveguide[J]. Optics Express, 2012, 20(14): 14769-14778.
[243] TAKENAKA H, HATAYAMA M, ITO H, et al. Development of Si/SiO2 Multilayer Type AFM Tip Characterizers[J]. Journal of Surface Analysis, 2011, 17(3): 264-268.
[244] PANTELIDES S T, WANG S, FRANCESCHETTI A, et al. Si/SiO2 and SiC/SiO2 interfaces for MOSFETs–challenges and advances[C]//Materials Science Forum. Trans Tech Publications Ltd, 2006, 527: 935-948.
[245] FANG F. The three paradigms of manufacturing advancement[J]. Journal of Manufacturing Systems, 2022, 63: 504-505.
[246] FANG F. Atomic and close-to-atomic scale manufacturing: perspectives and measures[J]. International Journal of Extreme Manufacturing, 2020, 2(3): 030201.
[247] KRIVANEK O L, TSUI D, SHENG T, et al. A high resolution electron microscopy study of the Si-SiO2 interface[M]. The Physics of SiO2 and Its Interfaces. Elsevier. 1978: 356-361.
[248] AKATSU H, OHDOMARI I. HRTEM observation of the Si/SiO2 interface[J]. Applied Surface Science, 1990, 41: 357-364.
[249] YOSHINOBU T, IWAMOTO A, SUDOH K, et al. Scaling of Si/SiO2 interface roughness[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1995, 13(4): 1630-1634.
[250] BONGIORNO A, PASQUARELLO A. Validity of the bond-energy picture for the energetics at Si−SiO2 interfaces[J]. Physical Review B, 2000, 62(24): R16326.
[251] TU Y, TERSOFF J. Structure and energetics of the Si-SiO2 interface [J]. Physical review letters, 2000, 84(19): 4393.
[252] BOTTOMLEY D, OMI H, KOBAYASHI Y, et al. Origin of self-assembled step and terrace formation at the Si (001)−SiO2 interface[J]. Physical Review B, 2002, 66(3): 035301.
[253] OMI H, KAGESHIMA H, KAWAMURA T, et al. Stability-instability transition of reaction fronts in thermal oxidation of silicon[J]. Physical Review B, 2009, 79(24): 245319.
[254] LI Y F, LIU Z P. Smallest Stable Si/SiO2 Interface that Suppresses Quantum Tunneling from Machine-Learning-Based Global Search[J]. Physical Review Letters, 2022, 128(22): 226102.
[255] OMI H, KAGESHIMA H, UEMATSU M. Scaling and universality of roughening in thermal oxidation of Si (001)[J]. Physical Review Letters, 2006, 97(1): 016102.
[256] OMI H, HOMMA Y. Self-ordering on vicinal Si (111) during molecular beam epitaxy[J]. Physical Review B, 2005, 72(19): 195322.
[257] KAGESHIMA H, SHIRAISHI K, ENDOH T. Reconsideration of Si pillar thermal oxidation mechanism[J]. Japanese Journal of Applied Physics, 2018, 57(6S3): 06KD2.
[258] HOJO D, TOKUDA N, YAMABE K. Direct observation of two-dimensional growth at SiO2/Si (111) interface[J]. Thin Solid Films, 2007, 515(20-21): 7892-7898.
[259] SOLA M M. Fabrication of c-Si microstructures through reorganization at high temperatures[D]. Universitat Politècnica de Catalunya, 2015.
[260] SALVALAGLIO M, BACKOFEN R, VOIGT A, et al. Morphological evolution of pit-patterned Si (001) substrates driven by surface-energy reduction[J]. Nanoscale Research Letters, 2017, 12(1): 1-8.
[261] ACOSTA P E, KONONCHUK O, GOURDEL C, et al. Surface self-diffusion of silicon during high temperature annealing[J]. Journal of Applied Physics, 2014, 115(13): 134903.
[262] LI R, LI Y, DENG H. Plasma-induced atom migration manufacturing of fused silica [J]. Precision Engineering, 2022, 76: 305-313.
[263] SARANI A, NIKIFOROV A Y, LEYS C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements[J]. Physics of Plasmas, 2010, 17(6): 063504.
[264] SONG M, LEE Y, CHUNG T. Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy[J]. Physics of Plasmas, 2011, 18(2): 023504.
修改评论